Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T14:23:44.265Z Has data issue: false hasContentIssue false

XIX.—Quantitative Evolution. XXI. Some Correlations in the Present Results of Production Rates

Published online by Cambridge University Press:  11 June 2012

James Small
Affiliation:
Queen's University, Belfast.
Get access

Synopsis

Two series of logarithmic expansion systems are described, with × 1·6 as the rate of increase in numbers of new monotypic genera correlated with a rate of × 2·0 for increase in total numbers of species. These series are discussed in relation to current numbers for monotypic genera, total genera, and total species in 36 of the largest 45 families of flowering plants.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Babcock, E. B., 1947. The Genus Crepis, vol. 1, Univ. Calif. Press.Google Scholar
Bentham, G., 1874. Compositæ in Genera Plantarum, London.Google Scholar
Berry, E. W., 1930. “Revision of the Lower Eocene Wilcox Flora of the Southeastern States”, U.S. Geol. Surv. Prof. Paper, No. 156.Google Scholar
Bews, J. W., 1929. The World's Grasses, London.Google Scholar
Brown, R. W., 1944. “Temperate Species in the Eocene Flora of Southeastern United States”, Journ. Washington Acad. Sci., XXXIV, 349351 (and earlier papers).Google Scholar
Darrah, W. C., 1939. Principles of Paleobotany, Leiden.Google Scholar
Deyl, M., 1946. “Study of the genus Sesleria”, Opera Botanica Čechica, III, 1256.Google Scholar
Deyl, M., 1950. “Diminishing and Repeated Variation in the Evolution of Plants”, Stud. Bot., Čechoslovaca, XI, fasc. 4, 245261.Google Scholar
Sharp, A. J., 1951. “The Relation of the Eocene Wilcox Flora to Some Modern Floras”, Evolution, V, Pt. 1, 15.CrossRefGoogle Scholar
Simpson, G. G., 1944. Tempo and Mode in Evolution, Columbia U.P.Google Scholar
Small, J., 19171919. “The Origin and Development of Compositæ”, New Phytologist, XVI–XVIII, and Reprint, 1919. London and C.U.P.Google Scholar
Small, J., 1922. “Age and Area, and Size and Space in the Compositæ”, Chap. XIII of Willis's Age and Area.Google Scholar
Small, J., and Johnston, I. K., 1937. “Quantitative Evolution in Compositæ”, Proc. Roy. Soc. Edin., LVII, 2654.Google Scholar
Small, J., 1937. “Quantitative Evolution. II. Composiæ Dp-ages in Relation to Time”, Proc. Roy. Soc. Edin., LVII, 215220.Google Scholar
Small, J., 1937. “Quantitative Evolution. III. Dp-ages of Gramineæ”, Proc. Roy. Soc. Edin., LVII, 221227.Google Scholar
Small, J., 1938. “Quantitative Evolution. IV. Deductions from the BAT Curve”, Proc. Roy. Soc. Edin., LVIII, 1423.Google Scholar
Small, J., 1938. “Quantitative Evolution. V. The Free and Apparent Dp-ages of Compositæ”, Proc. Roy. Soc. Edin., LVIII, 2431.Google Scholar
Small, J., 1938. “Quantitative Evolution. VI. Further Deductions from the BAT Curve”, Proc. Roy. Soc. Edin., LVIII, 3254.Google Scholar
Small, J., 1945. “Quantitative Evolution. VII. The Diatoms”, Proc. Roy. Soc. Edin., LXII, 128131.Google Scholar
Small, J., 1945. “Tables to illustrate the Geological History of Species-Number in Diatoms”, Proc. Roy. Irish Acad., B, L, Pt. 17, 295309.Google Scholar
Small, J., 1946. “Quantitative Evolution. VIII. Numerical Analysis of Tables to illustrate the Geological History of Species-Number in Diatoms; an Introductory Summary”, Proc. Roy. Soc. Edin., B, LI, 5380.Google Scholar
Small, J., 1947. “Some Laws of Organic Evolution”, Brit. Assoc. Adv. Science, Section K, Dundee (privately printed).Google Scholar
Small, J., 1948. “Quantitative Evolution. IX–XIII. Details of the History of Diatoms”, Proc. Roy. Irish Acad., B, LI, Pts. 17–20, 261346.Google Scholar
Small, J., 1948. “Quantitative Evolution. XIV. Production Rates”, Proc. Roy. Soc. Edin., B, LXIII, 188199.Google Scholar
Small, J., 1949. “Quantitative Evolution. XV. Numerical Evolution”, Acta Biotheoretica, IX, 140, Leiden.Google Scholar
Small, J., 1949. “Quantitative Evolution. XVII. The Shape and Pattern of Evolution”, Phyton, 1, Pts. 2–4, 269281, Austria.Google Scholar
Small, J., 1950. “Quantitative Evolution. XVI. Increase of Species-Number in Diatoms”, Ann. Bot., XIV, 91113.CrossRefGoogle Scholar
Small, J., 1950. “Quantitative Evolution. XVIII. Revision of Numerical Data for Diatom Durations and Numbers”, Proc. Roy. Irish Acad., B, LIII, Pt. 13, 241263.Google Scholar
Small, J., 1950. “Quantitative Evolution. XIX. The Numerical Composition of Copeland's Filicales. Symposium on the Classification of Ferns”, Bot. Soc. Amer., Columbus, Ohio, 11.9.50.Google Scholar
Small, J., 1951. “Quantitative Evolution. XX. Correlations in Rates of Diversification”, Proc. Roy. Soc. Edin., B, LXIV, 277291.Google Scholar
Willis, J. C., 1922. Age and Area, C.U.P.Google Scholar
Willis, J. C., 1940. The Course of Evolution, C.U.P.Google Scholar
Willis, J. C., 1948. Dictionary of Flowering Plants and Ferns, 6th ed., revised, C.U.P.Google Scholar
Willis, J. C., 1949. “The Birth and Spread of Species”, Boissiera, V, 1561.Google Scholar
Wood, A., 1947. “The Supposed Cambrian Foraminifera from the Malverns”, Q. Journ. Geol. Soc. Lond., CII, 447460. (See also Cushman, J. A., 1948. Foraminifera, 4th ed., revised, Harvard U.P.)Google Scholar
Yule, G. Udny, 1924. “A Mathematical Theory of Evolution”, Phil. Trans. Roy. Soc. Lond., B, CXIII, 2187.Google Scholar
Zeuner, F. E., 1950. Dating the Past, 2nd ed., London.Google Scholar