Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T19:44:12.499Z Has data issue: false hasContentIssue false

XIX.—Photochemical Measurements of Light Intensity in Two Common Vegetation Types in Tropical Africa, by Means of the Improved Eder-Hecht Photometer

Published online by Cambridge University Press:  15 September 2014

J. Y. Moggridge
Affiliation:
Dept. Tsetse-fly Research, Kondoa-Irangi, Tanganyika Territory
Get access

Summary

(1) A year's measurement of the light-intensity in an exposed site (“mbuga”) and in a Berlinia woodland community, Kikori (4° 21' S.), Tanganyika, by means of the Eder-Hecht Graukeilphotometer is described.

(2) The Bunsen-Roscoe units per second are shown to be very high, even under canopy of the Berlinia; they are very much greater than measurements recorded by Dorno for Assuan and Rio de Janeiro.

(3) While there is a positive correlation between the B.-R. values and the hours of direct sunshine, it is also clear that during cloudy periods (less than 50 per cent, of possible sunshine is experienced at Kikori and on the Central Plateau of East Africa generally) the B.-R. values are also very high.

(4) There is a positive correlation between the values of the Eder-Hecht photometer (in terms of blue-violet-ultraviolet rays), and the readings of the Livingston radio-atmometer measuring the total light-intensity of the same stations in terms of cubic centimetres of water.

(5) In virtue of the peculiar effects of the light of Tropical Africa upon the European nervous system, it is urged that quantitative and qualitative studies of the light in those regions should be investigated.

(6) Field biologists should make greater use of this efficient, cheap, simple, and portable instrument.

Type
Proceedings
Copyright
Copyright © Royal Society of Edinburgh 1932

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bunsen, R., and Roscoe, H. (1862), “Meteorologische Lichtmessungen,” in Poggendorff's Annalen, cxvii.Google Scholar
Dorno, C. (1925), “Über die Verwendbarkeit von Eders Graukeilphotometer im meteorologischen Dienst, usw.,” Met. Zeitschr.Google Scholar
Dorno, C. (1927), “Parallelmessungen der photochemischen Ortshelligkeit zwischen nördl. Polarkreis und südl. Wendekreis mittels Eders Graukeilphotometer,” Met. Zeitschr.Google Scholar
Dorno, C. (1928), “Ratschlage zum Gebrauch des Graukeilsphotometers noch modifiziert für meteorologische Zwecke von C. Dorno,” cyclograph issued by the Davos Observatorium.CrossRefGoogle Scholar
Eder, J. M. (1919), in Zitz. Ber. d. Ak. d. Wiss. i. Wien, Abt. IIa, Ed. cxxviii; also in Photographische Korrespondenz, S. 141. Mitteilungen der osterreichischen Techn. Versuchsamtes in Wien, Nr. 4.Google Scholar
Eder, J. M. (1920), Ein neues Graukeilphotometer, W. Knapp, Halle.Google Scholar
Eder, J. M. (1921), “Die Messung der Lichstrahlen Dosen in der Therapie,” a. d. Wiener Medizinischen Wochensciirift, Nr. 45.Google Scholar
Hecht, W. (1918), “Das Graukeilphotometer im Dienste der Pflanzenkultur,” Zitz. Ber. d. Ah. d. Wiss. i. Wien.Google Scholar
Heidke, P. (1923), “Das Klima,” in Obst E. Mitt. d. Geogr. Gesellschaft Hamburg, xxxv.Google Scholar
Kopmüller, A. (1930), “Verbessertes Graukeilphotometer,” a. d. Zeitschr. f. Wiss. Baderkunde, Heft 11, Berlin.Google Scholar
Livingston, B. E. (1915), “Atmometry and the Porous Cup Atmometer. IV. (The Radio-atmometer),” The Plant World, xviii, pp. 143149.Google Scholar
Phillips, J. F. V. (1930), “Some Important Vegetation Communities in the Central Province of Tanganyika Territory,” Journ. Ecol., xviii, pp. 193234.CrossRefGoogle Scholar
Phillips, J. F. V. (1931), Forest Succession and Ecology in the Knysna Region, Union S. Africa Bot. Survey Memoir.Google Scholar