Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T08:46:32.970Z Has data issue: false hasContentIssue false

Apomorphine-induced operant deficits: a neuroleptic-sensitive but drug- and dose-dependent animal model of behavior

Published online by Cambridge University Press:  28 April 2020

P. Carnoy
Affiliation:
Département de Pharmacologie - Faculté de Médecine Pitié-Salpêtrière, 91, boulevard de l’Hôpital, 75634Paris Cedex 13, France
S. Ravard
Affiliation:
Département de Pharmacologie - Faculté de Médecine Pitié-Salpêtrière, 91, boulevard de l’Hôpital, 75634Paris Cedex 13, France
D. Hervé
Affiliation:
Chaire de Neuropharmacologie, INSHRM U. 114, Collège de France, 75231Paris Cedex 05, France
J.-P. Tassin
Affiliation:
Chaire de Neuropharmacologie, INSHRM U. 114, Collège de France, 75231Paris Cedex 05, France
P. Soubrié
Affiliation:
INSERM U302 - Faculté de Médecine Pitié-Salpêtrière, 91, boulevard de l’Hôpital, 75634Paris Cedex 13, France
Get access

Summary

In order to further assess the alterations which might underly behavioral deficits associated with a reduced dopaminergic transmission, the effects of apomorphine at doses thought to stimulate dopaminergic autoreceptors were studied on rat operant behavior.

Low doses of apomorphine caused a reward deficit when animais were shifted from continuons reinforcement to fixed ratio schedules of food delivery (fig. 1). This effect could be accounted for by a decreased ability of secondary reinforcers to sustain responding and/or by a disruption of cognitive processes (Table 1). The apomorphine-induced reward deficit in the fixed ratio 4 schedule was reversed by “disinhibitory” neuroleptics including amisulpride, pimozide, pipotiazine and sulpiride, at low to moderate doses. Conversely, “conventional” neuroleptics such as chlorpromazine, fluphenazine, haloperidol, metoclopramide and thioridazine were found inactive in reversing the deficit caused by apomorphine (fig. 2). Results obtained after lesion of dopaminergic neurons by 6-hydroxydopamine suggested that the behavioral deficit induced by apomorphine was related not so much to a reduction in dopaminergic activity in given restricted areas such as the VTA (fig. 3), the nucleus accumbens (fig. 4) or the prefrontal cortex (fig. 5), as to a functional imbalance between mesolimbic and mesocortical dopaminergic systems.

Résumé

Résumé

Afin de déterminer les modifications qui pourraient être responsables des déficits comportementaux associés à une diminution de la transmission dopaminergique, les effets de l'apomorphine, à des doses supposées stimuler les autorécepteurs dopaminergiques, ont été étudiés dans une situation de conditionnement opérant.

A doses faibles, l'apomorphine provoque un déficit comportemental lorsque les animaux sont placés dans une situation dans laquelle ils doivent effectuer non plus un appui mais une séquence d'appuis sur le levier d'une boîte de Skinner pour obtenir une boulette de nourriture (fig. 1). Une réduction de la capacité des stimuli secondaires à maintenir un comportement et/ou une perturbation des processus cognitifs pourrait expliquer le déficit provoqué par l'apomorphine (Tableau 1). Ce déficit est supprimé par les neuroleptiques “désinhibiteurs” tels que l'amisulpride, le pimozide, la pipotiazine et le sulpiride à doses faibles ou modérées. A l'inverse, les neuroleptiques “classiques” tels que la chlorpromazine, la fluphénazine, l'halopléridol, le métoclopramide et la thioridazine ne réduisent pas le déficit induit par l'apomorphine (fig. 2).

Les résultats obtenus après lésion de neurones dopaminergiques par la 6-hydroxydopamine suggèrent que c'est moins une diminution de l'activité dopaminergique dans des structures telles que l'ATV (fig. 3), le noyau accumbens (fig. 4) ou le cortex préfrontal (fig. 5) qu'un déséquilibre fonctionnel entre les systèmes dopaminergiques mésolimbiques et mésocorticaux qui est à l'origine du déficit induit par l'apomorphine.

Type
Research Article
Copyright
Copyright © European Psychiatric Association 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References/Bibliographie

Alfredsson, G.Harnryd, C., Wiesel, F.A. - Effects of sulpiride and chlorpromazine on autistic and positive symptoms in schizophrenic patients. Relationship to drug concentrations. Psychopharmacology (Berlin) 1985; 85: 813.CrossRefGoogle ScholarPubMed
Andreasen, N.C., Olsen, S. - Negative and positive schizophrenia. Arch Gen Psychiatry 1982; 39; 789794.CrossRefGoogle ScholarPubMed
Bannon, M.J., Reinhard, J.F., Bunney, B.S., Roth, R.H. - Unique response to antipsychotic drugs is due to absence of terminal autoreceptors in mesocortical dopamine neurons. Nature 1982; 296: 444446.CrossRefGoogle Scholar
Bannon, M.J., Wolf, M.A., Roth, R.H. - Pharmacology of dopamine neurons innervating the prefrontal cingulate and piriform cortices. Eur J Pharmacol 1983; 92; 115125.CrossRefGoogle ScholarPubMed
Braff, D.L., Saccuzzo, D.R. - The time course of informationprocessing deficits in schizophrenia. Am J Psychiatry 1985; 142: 170174.Google Scholar
Carnoy, P., Ravard, S., Wemerman, B., Soubrie, P., Simon, P. - Behavioral deficits induced by low doses of apomorphine in rats. Evidence for a motivational and cognitive dysfunction which discriminates among neuroleptic drugs. Pharmacol Biochem Behav 1986; 25: 503509.CrossRefGoogle ScholarPubMed
Chiodo, L.A., Bunney, H.S. - Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 1983; 3: 16071619.CrossRefGoogle ScholarPubMed
Costall, B., Fortune, D.H., Hui, S.C., Naylor, R.J. - Neuroleptic antagonism of the motor inhibitory effects of apomorphine within the nueleus accumbens: Drug interaction at presynaptic receptors. Eur J Pharmacol 1980; 63: 347358.CrossRefGoogle Scholar
Cromwell, R.L. - Stimulus redundancy and schizophrenia. J Nerv Ment Dis 1968; 146: 360375.CrossRefGoogle Scholar
Crow, T.J. - Positive and negative schizophrenic symptoms and the role of dopamine. Br J Psychiatry 1980; 137: 379386.CrossRefGoogle ScholarPubMed
Di Chiara, G., Porceddu, M.L., Vargiu, L., Argiolas, A., Gessa, G.L. - Evidence for dopamine receptors mediating sedation in the mouse brain. Nature 1976; 264: 564566.CrossRefGoogle ScholarPubMed
Fadda, F., Marcou, M., Rossetti, Z.L., Mosca, E., Gessa, G.L. - Evidence for dopamine autoreceptors in mesocortical dopamine neurons. Brain Res 1984; 293: 6772.CrossRefGoogle ScholarPubMed
Frith, C.D. - Consciousness, information processing and schizophrenia. Br J Psychiatry 1979; 134: 225235.CrossRefGoogle Scholar
Helmreich, I., Reimann, W., Hertting, G., Starke, K. - Are presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in rabbit caudate nucleus pharmacologically different ? Neuroscience 1982; 7: 15591566.CrossRefGoogle ScholarPubMed
Horvarth, T., Meares, R. - The sensory filter in schizophrenia: A study of habituation, arousal and the dopamine hypothesis. Br J Psychiatry 1979; 134: 3945.CrossRefGoogle Scholar
Konig, J.F., Klippel, R.A. - The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, Baltimore, 1963.Google Scholar
Lecrubier, Y., Puech, A.J., Simon, P., Widlocher, D. - Schizophrénie : hyper ou hypofonctionnement du système dopaminergique ? Une hypothèse bipolaire. Psychologie Médicale 1980; 12: 24312441.Google Scholar
Meltzer, H.Y., Sommers, A.A., Luchins, D.J. - The effect of neuroleptics and psychotropic drugs on negative symptoms in schizophrenia. J Clinical Psychopharmacol 1986; 6: 329338.CrossRefGoogle Scholar
Misslin, R., Ropartz, P., Jung, L. - Impairment of responses ta novelty by apomorphine and its antagonism by neuroleptics in mice. Psychopharmacology (Berlin) 1984; 82: 113117.CrossRefGoogle Scholar
Montanaro, N., Vacchero, A., Dall’ohio, R., Gandolfi, O. - Time course of rat motility response to apomorphine: A simple model for studying preferential blockade of brain dopamine receptors mediating sedation. Psychopharmacology (Berlin) 1983; 81: 214219.CrossRefGoogle ScholarPubMed
Moore, K.E, Kelly, P.H. - Biochemical pharmacology of mesolimbic and mesocortical dopaminergic neurons. In: Lipton, M.A., Di Mascio, A. & Killam, K. eds: Psychopharmacology: A generation of Progress, pp 221234, Raven Press, N.Y., 1978.Google Scholar
Morley, M.J., Bradshaw, C., Szabade, E. - The effect of pimozide on variable interval performance: A test for the anhedonia hypothesis of the mode of action of neuroleptics. Psychopharmacology (Berlin) 1984; 84: 531536.CrossRefGoogle ScholarPubMed
Petit, M., Zann, M., Colonna, L. - Etude contrôlée de l’effet désinhibiteur de faibles doses de sulpiride dans les psychoses schizophréniques déficitaires. Encéphale 1984; 10: 2528.Google Scholar
Pycock, C.J., Carter, C.J., Kerwin, R.W. - Effects of the 6-hydroxydopamine lesions of the medial prefrontal cortex on neurotransmitter Systems in subcortical sites in the rat. J Neurochem 1980; 34: 9199.CrossRefGoogle ScholarPubMed
Roth, R.H. - Dopamine autoreceptors: pharmacology, function and comparison with postsynaptic dopamine receptors. Commun Psychopharmacol 1979; 3: 429445.Google Scholar
Serra, G., Van Ree, J.M., De Wied, D. - Influence of classical and atypical neuroleptics on apomorphine-induced behavioral changes and on extinction of a conditioned avoidance response. J Pharm Pharmacol 1983; 35: 255257.CrossRefGoogle Scholar
Shepard, P.D., German, P.C. - A subpopulation of mesocortical dopamine neurons possesses autoreceptors. Eur J Pharmacol 1984; 98: 455456.CrossRefGoogle ScholarPubMed
Skirboll, L.R., Grace, A.A., Bunney, B.S. - Dopamine auto and postsynaptic receptors: Electrophysiological evidence for differential sensitivity to dopamine agonists. Science 1979; 206: 8082'.CrossRefGoogle ScholarPubMed
Solomon, P.R., Crider, A., Winkelman, J.W., Turi, A., Kamer, R.M., Kaplan, L.J. - Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biol Psychiatry 1981; 16: 519537.Google ScholarPubMed
Sumners, C., De Vries, J.B., Horn, A.S. - Behavioral and neurochemical studies on apomorphine-induced hypomotility in mice. Neuropharmacology 1981; 20: 12031208.CrossRefGoogle ScholarPubMed
Taylor, J.R., Robbins, T.W. - Enhanced behavioral control by conditioned reinforcers following microinjections of damphetamine into the nucleus accumbens. Psychopharmacology (Berlin) 1984; 83: 405412.CrossRefGoogle Scholar
White, F.J., Wang, R.Y. - Differential effects of classical and atypical antipsychotic drugs on A9 and A10 neurons. Science 1983; 221: 10541057.CrossRefGoogle Scholar
Wise, R.A. - Neuroleptics and operant behaviour: the anhedonia hypothesis. Behav Brain Sci 1982; 5: 3987.CrossRefGoogle Scholar
Submit a response

Comments

No Comments have been published for this article.