Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T00:15:33.529Z Has data issue: false hasContentIssue false

Rythmes Biologiques, Anxiété, Cognition et Sommeil

Published online by Cambridge University Press:  28 April 2020

P. Lemoine*
Affiliation:
Unité clinique de psychiatrie biologique, CHRS Le Vinatier, 69677Lyon Bron, France
Get access

Résumé

Un des aspects essentiels de la cognition chez l’homme est lié à la qualité de son sommeil qui semble conditionner la fonction de mémorisation aussi bien que d’attention. Il est d’ailleurs remarquable de constater que les molécules hypnotiques peuvent avoir des effets différents sur la cognition, de façon peut-être corrélée à leur action sur les differents stades de sommeil et sûrement liée à la persistance de leurs effets sur la vigilance pendant la journée.

Il est désormais classique de différencier l’anxiété généralisée (AG) de la dépression majeure (DM) par la mise en évidence des variations circadiennes marquées sur les plans clinique, polygraphique, hormonal et physiologique dans la dépression alors qu’une non-rythmicité de l’anxiété généralisée est habituellement revendiquée. Certains rythmes peuvent néanmoins être mis en évidence, bien que de façon moins marquée dans cette pathologie. Ainsi, des variations circadiennes sont souvent notées sur le plan clinique, un maximum d’anxiété et d’attaques de panique se produisant l’après-midi et en début de soirée au moment de l’acmé de la courbe de température centrale. De même, certaines particularités sont notables au niveau de l’analyse des enregistrements polygraphiques de sommeil et des niveaux plasmatiques hormonaux.

Un des faits les plus troublants est de constater une certaine symetrie dans l’expression clinique et polygraphique des troubles dans la dépression majeure et l’anxiété généralisee: la DM est classiquement associée à un réveil très douloureux en milieu de nuit et à une désorganisation de la structure polygraphique du sommeil dans la deuxième partie de la nuit, moments où la température centrale après avoir atteint son niveau minimal amorce une remontée. A l’inverse, l’AG est à son maximum en fin d’après-midi et comporte une insomnie de la première partie de la nuit objectivée par un aspect haché du sommeil observable entre le moment du coucher et le milieu de la nuit, période où la temperature centrale est dans une phase descendante.

Certaines anomalies peuvent être également retrouvées aux niveaux physiologique et biologique. Ces ditférentes observations devraient sans doute, dans l’avenir, susciter des recherches chronobiologiques plus nombreuses et influencer les habitudes de prescription.

Summary

Summary

Human cognitive performances, including memory and attention, are significantly linked to sleep organisation and rest—activity rhythms. Certainly due to their long acting sedative effects and probably to their influence on sleep patterns, benzodiazepine and barbiturate compounds influence cognition.

In contrast to major depression, generalized anxiety is classically supposed to be independent of any biological rhythms. However, several circadian features can be detected: frequency of insomnia (difficulties in initiating and maintaining sleep during the first part of the night), significant increase in panic attacks during the afternoon and generalized anxiety during the early evening.

Polysomnographic circadian variation analysis leads to a reliable discrimination between major depressive disorders and anxiety disorders (generalized anxiety, panic attacks, obsessive compulsive disorders).

Otherwise, physiological rhythms provide interesting data since in man, vigor, mood and cognitive performances are positively correlated to core temperature. The worst period of time for depressed patients is the early morning (3 to 5 a.m.), in correlation with the beginning of core temperature increase. On the contrary, a maximum of anxiety is observed in correlation with the beginning of core temperature decline.

In addition, several circadian rhythms concerning alpha and beta adrenergic receptor affinity have been found. These variations are down-regulated (20 to 30%) and delayed (4 to 12 h) by chronic administration of imipramine, MAOI and chronic bright light exposure. Moreover, chronic imipramine administration in rats delays (4 h) benzodiazepine binding in frontal and striatal areas. In the light of these findings, it is amazing to recall that imipramine positively acts on anxiety disorders after a 2-week-delay.

In conclusion, research on anxiety should stress chronobioiogical data and differentiate accordingly the different clinical aspects. On the other hand, practitioners should take in account «chronosemeiological» and «chronopharmacological» aspects before prescribing tranquillizers.

Type
Research Article
Copyright
Copyright © European Psychiatric Association 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Akiskal, H.S.Lemmi, H.Dickson, H.Ring, D.Yerevanian, B. & Van Valkenburg, C. (1984) Chronic depression: sleep EEG differentiation of primary dysthymic disorders from anxious depression. J. Affective Disord. 6, 287295CrossRefGoogle Scholar
Altmayer, P.Mayer, D.Mayerbach, H., Von Lucker, P. & Wetzerlsberger, F. (1979) Circadian variations in pharmacokinetic parameters after oral application of hexobarbital. Chronobiologia 6, 7378Google Scholar
Aymard, N. & Soulairac, A. (1979) Chronobiological changes in pharmacokinetics of di-potassic clorazepate, a benzodiazepine. In: Chronopharmacology (Reinberg, A. & Halberg, F., eds.), Pergamon Press, New York, pp. 111-117Google Scholar
Bruguerolle, B. (1979) Chronopharmacology in pancuronium in the rat : anaesthesia and seasonal influence ? In: Chronopharmacology (Reinberg, A. & Halberg, F., eds.). Pergamon Press, New York, pp. 117-122Google Scholar
Cameron, O.Lee, M.Kotun, J. & McPhee, K. (1986) Circadian symptom fluctuations in people with anxiety disorders. J. Affective Disord. 11,213-218CrossRefGoogle ScholarPubMed
Charney, D. & Heninger, G. (1986) Alpha-2 adrenergic and opiate receptor blockade. Arch. Gen. Psychiatry 43, 10371041CrossRefGoogle ScholarPubMed
Dunn, J.Scheving, L. & Millet, P. (1972) Circadian variation in stress evoked increases in plasma corticosterone. Am. J. Psychiatry 223, 2, 406410Google Scholar
Fukami, N.Kotani, T.Schimoji, K.Moriaka, T. & Isa, T. (1970) Circadian rhythm and anaesthesia. Jpn J. Anaesthesiol. 19, 12351240Google Scholar
Gillin, J.C.Duncan, W.Pettigrew, K.Frankel, B.L. & Snyder, F. (1979) Successful separation of depressed, normal and insomniac subjects by EEG sleep data. Arch. Gen. Psychiatry 36, 8590CrossRefGoogle ScholarPubMed
Insel, T.R.Gillin, J.C.Moore, A.Mendelson, W.B.Loewenstein, R.J. & Murphy, D.L. (1982) The sleep of patients with obsessive-compulsive disorder. Arch. Gen. Psychiatry 39, 13721377CrossRefGoogle ScholarPubMed
Lemoine, P. (1987) Anxiété, dépression, existe-t-il un continuum? Rev. Prat. 37, 46, 28182822Google Scholar
Lemoine, P. & Mouret, J. (1988) Les temps de la dépression. Psychiatrie (sous presse)CrossRefGoogle Scholar
Monk, T.Leng, V.Folkard, S. & Weitzman, E. (1983) Circadian rhythms in subjective alertness and core body temperature. Chronobiologia 11, 343354Google Scholar
Mouret, J.Maillard, F. & Ruel, D. (1988) Zopiclone vs triazolam in insomniac geriatric patients; specific increase of delta sleep with zopiclone (en préparation)Google Scholar
Muller, O. (1974) Circadian rhythmicity in response to barbiturate. In: Chronobiology (Scheving, L. & Halberg, F., eds.), Igaku Shoin, Tokyo, pp. 187-192Google Scholar
Nakano, S. (1982) Time of day effect on psychotherapeutic drug response and kinetic in man. In: Toward chronopharmacology (Takahashi, Y.Halberg, F. & Walker, C., eds.), Pergamon Press, Oxford, pp. 51-56Google Scholar
Nesse, R.Curtis, G.Thyer, B.McCann, D.Huber-Smith, M. & Knopf, R. (1985) Endocrine and cardiovascular responses during phobic anxiety. Psychosom. Med. 47, 1, 320332CrossRefGoogle Scholar
Nicholson, A.N. & Stone, B.M. (1979) Hypnotic activity during the day of diazepam and its hydroxylated metabolites, 3-hydroxy-diazepam (temazepam) and 3-hydroxy, N-desmethyl-diazepam (oxazepam). In: Chronopharmacology (Reinberg, A. & Halberg, F., eds.), Pergamon press, New York, pp. 159-165Google Scholar
Reinberg, A. (1986) Circadian rhythms in effects of hypnotics and sleep inducers. Int. J. Clin. Pharm. Res. 6, 1, 3344Google Scholar
Reinberg, A.Levi, F.Bicakova, R.Rocher, A.Blum, J. & Ouechni, M. (1978) Biological time related changes of antihistamine and other effects of chronic administration of mequitazine in healthy adults. Ann. Rev. Chronopharmacol. 1, 6166Google Scholar
Reynolds, C.F.Shaw, D.M.Newton, T.F.Coble, P.A. & Kupfer, D.J. (1983) EEG sleep in outpatients with generalized anxiety: a preliminary comparison with depression outpatients. Psychiatr. Res. 8, 8189CrossRefGoogle Scholar
Scheving, L.E.Donald, F.Vedral, D.F. & Pauly, J.E. (1968) A circadian susceptibility rhythm in rats to pentobarbital sodium. Anal. Rec. 160, 741750CrossRefGoogle ScholarPubMed
Scheving, L.E.Mayersbach, H.V. & Pauly, J.E. (1974) An overview of chronopharmacology. J. Eur. Toxicol. 7, 4, 203227Google Scholar
Simpson, H.W.Bellamy, N.Bohlen, J. & Halberg, F. (1973) Double blind trial of a possible chronobiotic (Quiadon Van ). Int. J. Chronobiol. 1, 287291Google Scholar
Souêtre, C.Pringuet, D. & Darcourt, G. (1987) Sommeil, anxiété et dépression. In: Anxiété et Dépression. Rupture ou Continuité? (Darcourt, G. & Pringuey, D., eds.), Collection «Ellipses», ICI, Paris, pp. 275-283Google Scholar
Sturtevant, F.M. (1976) Chronopharmacokinetics of ethanol, I. Review of the literature and theoretical considerations. Chronobiologia 3, 237248Google ScholarPubMed
Uhde, T.W.Roy-Byrne, P.Gillin, C.Mendelson, W.Boulenger, J.P.Vittone, B. & Post, R. (1984) The sleep of patients with panic disorder: a preliminary report. Psychiatr. Res. 7, 28, 251259CrossRefGoogle Scholar
Van Den Broek, M.Bradshaw, C. & Szabadi, E. (1984) The effects of a psychological «stressor» and raised ambient temperature on the pharmacological responsiveness of human eccrine sweat glands: implications for sweat glands’ hyper-responsiveness in anxiety States. Eur. J. Clin. Pharmacol. 26, 209213CrossRefGoogle Scholar
Walker, C.H. (1974) Implications of biological rhythms in brain amine concentrations and drug toxicity. In: Chronobiology (Scheving, L. & Halberg, F., eds.), Igaku Shoin, Tokyo, pp. 205-211Google Scholar
Wirz Justice, A.Kafka, M.S.Naber, D. & Wehr, T.A. (1980) Circadian rhythms in rat brain and adrenergic receptors are modified by chronic imipramine. Life Sci., 27, 341347CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.