Hostname: page-component-7d684dbfc8-lxvtp Total loading time: 0 Render date: 2023-09-27T06:32:54.328Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Dimensional personality impairment is associated with disruptions in intrinsic intralimbic functional connectivity

Published online by Cambridge University Press:  11 August 2021

Jenna M. Traynor
Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
Johannes S. Wrege
Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
Marc Walter
Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
Anthony C. Ruocco*
Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
Author for correspondence: Anthony C. Ruocco, E-mail:



Recently proposed alternative dimensional models of personality disorder (PD) place the severity of impairments in self and interpersonal functioning at the core of personality pathology. However, associations of these impairments with disturbances in social, cognitive, and affective brain networks remain uninvestigated.


The present study examined patterns of resting-state functional connectivity (rsFC) in a sample of 74 age- and sex-matched participants (45 inpatients with PD and 29 healthy controls). At a minimum, PD patients carried a diagnosis of borderline PD, although the majority of the sample had one or more additional PDs. rsFC patterns in the following networks were compared between groups and in association with dimensional personality impairments: default mode network (DMN)/core mentalization, frontolimbic, salience, and central executive. Further, the extent to which variation in rsFC was explained by levels of personality impairment as compared to typology-specific borderline PD symptom severity was explored.


Relative to controls, the PD group showed disruptions in rsFC within the DMN/core mentalization and frontolimbic networks. Among PD patients, greater severity of dimensional self-interpersonal impairment was associated with stronger intralimbic rsFC. In contrast, severity of borderline PD-specific typology was not associated with any rsFC patterns.


Disruptions in core mentalization and affective networks are present in PD. Higher intralimbic functional connectivity may underlie self-interpersonal personality impairment in PD regardless of diagnostic typology-specific PD symptoms, providing initial neurobiological evidence supporting alternative dimensional conceptualizations of personality pathology.

Original Article
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Indicates shared first author.


Adenzato, M., Brambilla, M., Manenti, R., De Lucia, L., Trojano, L., Garofalo, S., … Cotelli, M. (2017). Gender differences in cognitive theory of mind revealed by transcranial direct current stimulation on medial prefrontal cortex. Scientific Reports, 7, 41219. doi:10.1038/srep41219CrossRefGoogle ScholarPubMed
Amad, A., Radua, J., Vaiva, G., Williams, S. C. R., & Fovet, T. (2019). Similarities and differences between borderline personality disorder and post traumatic stress disorder: Evidence from resting-state meta-analysis. Neuroscience and Biobehavioral Reviews, 105, 5259. doi: 10.1016/j.neubiorev.2019.07.018CrossRefGoogle Scholar
American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders (4th ed., Text Revision). Washington, DC: American Psychiatric Publishing.Google Scholar
Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17(8), 379390. doi: 10.1016/j.tics.2013.06.009CrossRefGoogle ScholarPubMed
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268277. doi: 10.1038/nrn1884CrossRefGoogle ScholarPubMed
Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric deformations in EPI time series. Neuroimage, 13(5), 903919. doi: 10.1006/nimg.2001.0746CrossRefGoogle ScholarPubMed
Ashburner, J., Barnes, G., Chen, C., Daunizeau, J., Flandin, G., Friston, K., … Phillips, C. (2013). SPM8 Manual, Trust Centre for Neuroimaging, London, UK. Retrieved from: Scholar
Baczkowski, B. M., van Zutphen, L., Siep, N., Jacob, G. A., Domes, G., Maier, S., & van de Ven, V. (2017). Deficient amygdala-prefrontal intrinsic connectivity after effortful emotion regulation in borderline personality disorder. European Archives of Psychiatry and Clinical Neuroscience, 267(6), 551565. doi: 10.1007/s00406-016-0760-zCrossRefGoogle ScholarPubMed
Bateman, A. W., & Fonagy, P. (2004). Mentalization-based treatment of BPD. Journal of Personality Disorders, 18(1), 3651. doi: 10.1002/j.2051-5545.2010.tb00255.xCrossRefGoogle ScholarPubMed
Bauml, J. G., Baumann, N., Avram, M., Bratec, S. M., Breeman, L., Berndt, M., … Sorg, C. (2019). The default mode network mediates the impact of infant regulatory problems on adult avoidant personality traits. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4, 333342. doi: 10.1016/j.bpsc.2018.11.005Google ScholarPubMed
Beauchamp, M. S. (2015). The social mysteries of the superior temporal sulcus. Trends in Cognitive Sciences, 19(9), 489490. doi: 10.1016/j.tics.2015.07.002CrossRefGoogle ScholarPubMed
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90101. doi: 10.1016/j.neuroimage.2007.04.042CrossRefGoogle ScholarPubMed
Bender, D. S., Morey, L. C., & Skodol, A. E. (2011). Toward a model for assessing level of personality functioning in DSM–5, part I: A review of theory and methods. Journal of Personality Assessment, 93, 332346. doi: 10.1080/00223891.2011.583808CrossRefGoogle Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate—a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B Statistical Methodology, 57, 289300. Retrieved from: Scholar
Bhatt, M. A., Lohrenz, T., Camerer, C. F., & Montague, P. R. (2012). Distinct contributions of the amygdala and parahippocampal gyrus to suspicion in a repeated bargaining game. Proceedings of the National Academy of Sciences USA, 109, 87288733. doi: 10.1073/pnas.1200738109CrossRefGoogle Scholar
Bohus, M., Kleindienst, N., Limberger, M. F., Stieglitz, R. D., Domsalla, M., Chapman, A. L., … Wolf, M. (2009). The short version of the borderline symptom list (BSL-23): Development and initial data on psychometric properties. Psychopathology, 42(1), 3239. doi: 10.1159/000173701CrossRefGoogle ScholarPubMed
Buchheim, A., Erk, S., George, C., Kachele, H., Kircher, T., Martius, P., … Walter, H. (2008). Neural correlates of attachment trauma in borderline personality disorder: A functional magnetic resonance imaging study. Neuroimaging, 163(3), 223235. doi: 10.1016/j.pscychresns.2007.07.001CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. doi: 10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Cacciola, J. S., Rutherford, M. J., Alterman, A. I., McKay, J. R., & Mulvaney, F. D. (1998). Long-term test-retest reliability of personality disorder diagnoses in opiate dependent patients. Journal of Personality Disorders, 12(4), 332337. doi: 10.1521/pedi.1998.12.4.332CrossRefGoogle ScholarPubMed
Chmielewski, M., Clark, L. A., Bagby, R. M., & Watson, D. (2015). Method matters: Understanding diagnostic reliability in DSM-IV and DSM-5. Journal of Abnormal Psychology, 124, 764769. doi: 10.1037/abn0000069CrossRefGoogle ScholarPubMed
Coutinho, J., Goncalves, O. F., Soares, J. M., Marques, P., & Sampaio, A. (2016). Alterations of the default mode network connectivity in obsessive-compulsive personality disorder: A pilot study. Psychiatry Research: Neuroimaging, 256, 17. doi: 10.1016/j.pscychresns.2016.08.007CrossRefGoogle ScholarPubMed
Cullen, K. R., Vizueta, N., Thomas, K. M., Han, G. J., Lim, K. O., Camchong, J., … Schulz, S. C. (2011). Amygdala functional connectivity in young women with borderline personality disorder. Brain Connectivity, 1, 6171. doi: 10.1089/brain.2010.0001CrossRefGoogle ScholarPubMed
Díaz-Marsá, M., Carrasco, J. L., López-Ibor, M., Moratti, S., Montes, A., Ortiz, T., & Lopez-Ibor, J. J. (2011). Orbitofrontal dysfunction related to depressive symptomatology in subjects with borderline personality disorder. Journal of Affective Disorders, 134, 410415. doi: 10.1016/j.jad.2011.04.034CrossRefGoogle ScholarPubMed
Doll, A., Sorg, C., Manoliu, A., Wöller, A., Meng, C., Förstl, H., … Riedl, V. (2013). Shifted intrinsic connectivity of central executive and salience network in borderline personality disorder. Frontiers in Human Neuroscience, 7, 727. doi: 10.3389/fnhum.2013.00727CrossRefGoogle ScholarPubMed
Drozek, R. P., & Unruh, B. T. (2020). Mentalization-based treatment of pathological narcissism. Journal of Personality Disorders, 34, 177203. doi: 10.1521/pedi.2020.34.supp.177CrossRefGoogle ScholarPubMed
Dudas, R. B., Mole, T. B., Morris, L. S., Denman, C., Hill, E., Szalma, B., … Voon, V. (2017). Amygdala and dlPFC abnormalities, with aberrant connectivity and habituation in response to emotional stimuli in females with BPD. Journal of Affective Disorders, 208, 460466. doi: 10.1016/j.jad.2016.10.043CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 4150. doi: 10.1038/35036213CrossRefGoogle ScholarPubMed
Ekselius, L. (2018). Personality disorder: A disease in disguise. Upsala Journal of Medical Sciences, 123(4), 194204. doi: 10.1080/03009734.2018.1526235CrossRefGoogle ScholarPubMed
Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693700. doi: 10.1038/nrn4044CrossRefGoogle ScholarPubMed
Fan, Y., Pestke, K., Feeser, M., Aust, S., Pruessner, J. C., Böker, H., … Grimm, S. (2015). Amygdala-hippocampal connectivity changes during acute psychosocial stress: Joint effect of early life stress and oxytocin. Neuropsychopharmacology, 40, 27362744. doi: 10.1038/npp.2015.123CrossRefGoogle ScholarPubMed
Feng, C., Yuan, J., Geng, H., Gu, R., Zhou, H., Wu, X., & Luo, Y. (2018). Individualized prediction of trait narcissism from whole-brain resting-state functional connectivity. Human Brain Mapping, 39(9), 37013712. doi: DOI: 10.1002/hbm.24205CrossRefGoogle Scholar
Fonagy, P., & Luyten, P. (2009). A developmental, mentalization-based approach to the understanding and treatment of borderline personality disorder. Developmental Psychopathology, 21(4), 13551381. doi: 10.1017/S0954579409990198CrossRefGoogle Scholar
Frings, L., Wagner, J., Unterrainer, J., Spreer, J., Halsband, U., & Schulze-Bonhage, A. (2006). Gender-related differences in lateralization of hippocampal activation and cognitive strategy. Neuroreport, 17, 417421. doi: 10.1097/01.wnr.0000203623.02082.e3CrossRefGoogle ScholarPubMed
Hahn, T., Dresler, T., Plichta, M. M., Ehlis, A. C., Ernst, L. H., Markulin, F., … Fallgatter, A. J. (2010). Functional amygdala-hippocampus connectivity during anticipation of aversive events is associated with gray's trait “sensitivity to punishment.”. Biological Psychiatry, 68, 459464. doi: 10.1016/j.biopsych.2010.04.033CrossRefGoogle ScholarPubMed
Hopwood, C. J. (2011). Personality traits in the DSM–5. Journal of Personality Assessment, 93, 398405. doi: 10.1080/00223891.2011.577472CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751. doi: 10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Jiang, W., Shi, F., Liao, J., Liu, H., Wang, T., Shen, C., … Shen, D. (2017). Disrupted functional connectome in antisocial personality disorder. Brain Imaging and Behaviour, 11(4), 10711084. doi: 10.1007/s11682-016-9572-zCrossRefGoogle ScholarPubMed
Kleindienst, N., Jungkunz, M., & Bohus, M. A. (2020). Proposed severity classification of borderline symptoms using the borderline symptom list (BSL-23). Borderline Personality Disorder and Emotion Dysregulation, 7, 11. doi: 10.1186/s40479-020-00126-6CrossRefGoogle ScholarPubMed
Koudys, J. W., Traynor, J. M., Rodrigo, A. H., Carcone, D., & Ruocco, A. C. (2019). The NIMH Research Domain Criteria (RDoC) initiative and its implications for research on personality disorder. Current Psychiatry Reports, 21(6), 37. doi: 10.1007/s11920-019-1023-2CrossRefGoogle ScholarPubMed
Krause-Utz, A., Winter, D., Schriner, F., Chiu, C. D., Lis, S., Spinhoven, P., … Elzinga, B. M. (2017). Reduced amygdala reactivity and impaired working memory during dissociation in borderline personality disorder. European Archives of Psychiatry and Clinical Neuroscience, 268, 401415. doi: 10.1007/s00406-017-0806-xCrossRefGoogle ScholarPubMed
Kruse, O., León, I. T., Stalder, T., Stark, R., & Klucken, T. (2018). Altered reward learning and hippocampal connectivity following psychosocial stress. NeuroImage, 171, 1525. doi: 10.1016/j.neuroimage.2017.12.076CrossRefGoogle ScholarPubMed
Kunisato, Y., Okamoto, Y., Okada, G., Aoyama, S., Nishiyama, Y., Onoda, K., & Yamawaki, S. (2011). Personality traits and the amplitude of spontaneous low-frequency oscillations during resting state. Neuroscience Letters, 492, 109113. doi: 10.1016/j.neulet.2011.01.067CrossRefGoogle ScholarPubMed
Lei, H., Huang, L., Li, J., Liu, W., Fan, J., Zhang, X., … Rao, H. (2020). Altered spontaneous brain activity in obsessive compulsive personality disorder. Comprehensive Psychiatry, 96, 152144. doi: 10.1016/j.comppsych.2019.152144CrossRefGoogle ScholarPubMed
Lei, X., Zhong, M., Liu, Y., Jin, X., Zhou, Q., Xi, C., … Yi, J. (2017). A resting-state fMRI study in borderline personality disorder combining amplitude of low frequency fluctuation, regional homogeneity and seed based functional connectivity. Journal of Affective Disorders, 218, 299305. doi: 10.1016/j.jad.2017.04.067CrossRefGoogle ScholarPubMed
Li, W., Mai, X., & Liu, C. (2014). The default mode network and social understanding of others: What do brain connectivity studies tell us. Frontiers in Human Neuroscience, 8, 74. doi: 10.3389/fnhum.2014.00074CrossRefGoogle ScholarPubMed
Marceau, E. M., Meuldijk, D., Townsend, M. L., Solowij, N., & Grenyer, B. F. S. (2018). Biomarker correlates of psychotherapy outcomes in borderline personality disorder: A systematic review. Neuroscience and Biobehavioral Reviews, 94, 166178. doi: 10.1016/j.neubiorev.2018.09.001CrossRefGoogle ScholarPubMed
Markon, K. E., Chmielewski, M., & Miller, C. J. (2011). The reliability and validity of discrete and continuous measures of psychopathology: A quantitative review. Psychology Bulletin, 137, 856879. doi: 10.1037/a0023678CrossRefGoogle ScholarPubMed
Morey, L. C. (2017). Development and initial evaluation of a self-report form of the DSM-5 level of personality functioning scale. Psychological Assessment, 29(10), 13021308. doi: 10.1037/pas0000450CrossRefGoogle ScholarPubMed
Morris, S. E., & Cuthbert, B. N. (2012). Research domain criteria: Cognitive systems, neural circuits, and dimensions of behavior. Dialogues in Clinical Neuroscience, 14, 2937. Retrieved from: ScholarPubMed
New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Mitelman, S. A., Newmark, R., … Siever, L. J. (2007). Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology, 32(7), 16291640. doi: 10.1038/sj.npp.1301283CrossRefGoogle ScholarPubMed
Newbury-Helps, J., Feigenbaum, J., & Fonagy, P. (2017). Offenders with antisocial personality disorder display more impairments in mentalizing. Journal of Personality Disorders, 31(2), 232255. doi: 10.1521/pedi_2016_30_246CrossRefGoogle ScholarPubMed
ONeil, A., D'Souza, A., Samson, A. C., Carballedo, A., Kerskens, C., & Frodl, T. (2015). Dysregulation between emotion and theory of mind networks in borderline personality disorder. Psychiatry Research: Neuroimaging, 231, 2532. doi: 10.1016/j.pscychresns.2014.11.002CrossRefGoogle Scholar
Parker, G., Both, L., Olley, A., Hadzi-Pavlovic, D., Irvine, P., & Jacobs, G. (2002). Defining disordered personality functioning. Journal of Personality Disorders, 16, 503522. doi: 10.1521/pedi.16.6.503.22139CrossRefGoogle ScholarPubMed
Persson, J., Herlitz, A., Engman, J., Morell, A., Sjolie, D., Wikstrom, J., & Soderlund, H. (2013). Remembering our origin: Gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behavioral Brain Research, 256, 219228. doi: 10.1016/j.bbr.2013.07.050CrossRefGoogle ScholarPubMed
Persson, J., Spreng, R. N., Turner, G., Herlitz, A., Morell, A., Stening, E., … Soderlund, H. (2014). Sex differences in volume and structural covariance of the anterior and posterior hippocampus. NeuroImage, 99(1), 215225. doi: 10.1016/j.neuroimage.2014.05.038CrossRefGoogle Scholar
Phillips, M. L., Robinson, H. A., & Pozzo-Miller, L. (2019). Ventral hippocampal projections to the medial prefrontal cortex regulate social memory. eLife, 8, e44182. doi: 10.7554/eLife.44182CrossRefGoogle Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59, 21422154. doi: 10.1016/j.neuroimage.2011.10.018CrossRefGoogle ScholarPubMed
Quattrini, G., Pini, L., Pievani, M., Magni, L. R., Lanfredi, M., Ferrari, C., … Rossi, R. (2019). Abnormalities in functional connectivity in borderline personality disorder: Correlations with metacognition and emotion dysregulation. Psychiatry Research: Neuroimaging, 283, 118124. doi: 10.1016/j.pscychresns.2018.12.010CrossRefGoogle ScholarPubMed
R Core Team (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from: Scholar
Regier, D. A., Narrow, W. E., Clarke, D. E., Kraemer, H. C., Kuramoto, S. J., Kuhl, E. A., & Kupfer, D. J. (2013). DSM-5 field trials in the United States and Canada: II. Test-retest reliability of selected categorical diagnoses. American Journal of Psychiatry, 170, 5970. doi: 10.1176/appi.ajp.2012.12070999CrossRefGoogle ScholarPubMed
Ruocco, A. C., Amirthavasagam, S., & Zakzanis, K. K. (2012). Amygdala and hippocampal volume reductions as candidate endophenotypes for borderline personality disorder: A meta-analysis of magnetic resonance imaging studies. Psychiatry Research: Neuroimaging, 201(3), 245252. doi: 10.1016/j.pscychresns.2012.02.012CrossRefGoogle ScholarPubMed
Ruocco, A. C., & Carcone, D. (2016). A neurobiological model of borderline personality disorder: Systematic and integrative review. Harvard Review of Psychiatry, 24, 311329. doi: 10.1097/HRP.0000000000000123CrossRefGoogle ScholarPubMed
Salvador, R., Vega, D., Pascual, J. C., Marco, J., Canales-Rodríguez, E. J., Aguilar, S., … Pomarol-Clotet, E. (2016). Converging medial frontal resting state and diffusion-based abnormalities in borderline personality disorder. Biological Psychiatry, 79, 107116. doi: 10.1016/j.biopsych.2014.08.026CrossRefGoogle ScholarPubMed
Sanislow, C. A., Grilo, C. M., Morey, L. C., Bender, D. S., Skodol, A. E., Gunderson, J. G., … McGlashan, T. H. (2002). Confirmatory factor analysis of DSM-IV criteria for borderline personality disorder: Findings from the collaborative longitudinal personality disorders study. American Journal of Psychiatry, 159(2), 284290. doi: 10.1176/appi.ajp.159.2.284CrossRefGoogle ScholarPubMed
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage, 19, 18351842. doi: 10.1016/s1053-8119(03)00230-1CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Szpunar, K. K. (2017). Escaping the past: Contributions of the hippocampus to future thinking and imagination. In Hannula, D. E., Duff, M. C. (Eds.), The hippocampus from cells to systems (pp. 439466). Basel, Switzerland: Springer International Publishing AG. doi: 10.1007/978-3-319-50406-3_14.CrossRefGoogle Scholar
Schulze, L., & Roepke, S. (2014). Structural and functional brain imaging in borderline, antisocial, and narcissistic personality disorder. In Mulert, C. & Shenton, M. E. (Eds.), MRI In Psychiatry (pp. 313340). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-54542-9_17.CrossRefGoogle Scholar
Sharp, C. (2016). Current trends in BPD research as indicative of a broader sea-change in psychiatric nosology. Personality Disorders, 7(4), 334343. doi: 10.1037/per0000199CrossRefGoogle ScholarPubMed
Sharp, C., Wright, A. G. C., Fowler, J. C., Frueh, B. C., Allen, J. G., Oldham, J., & Clark, L. A. (2015). The structure of personality pathology: Both general (“g”) and specific (“s”) factors? Journal of Abnormal Psychology, 124, 387398. doi: 10.1037/abn0000033CrossRefGoogle ScholarPubMed
Silbersweig, D., Clarkin, J. F., Goldstein, M., Kernberg, O. F., Tuescher, O., Levy, K. N., … Stern, E. (2007). Failure of frontolimbic inhibitory function in the context of negative emotion in borderline personality disorder. American Journal of Psychiatry, 164(12), 18321841. doi: 10.1176/appi.ajp.2007.06010126CrossRefGoogle ScholarPubMed
Skodol, A. E., Clark, L. A., Bender, D. S., Kruegar, R. F., Morey, L. C., Verheul, R., … Oldham, J. M. (2011). Proposed changes in personality and personality disorder assessment and diagnosis for DSM-5 part I: Description and rationale. Personality Disorders: Theory, Research, and Treatment, 2(1), 422. doi: 10.1037/a0021891CrossRefGoogle ScholarPubMed
Tang, Y., Jiang, W., Liao, J., Wang, W., & Luo, A. (2013). Identifying individuals with antisocial personality disorder using resting-state fMRI. PLoS One, 8(4), e:60652. doi: 10.1371/journal.pone.0060652CrossRefGoogle ScholarPubMed
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16, 5561. doi: 10.1038/nrn3857CrossRefGoogle ScholarPubMed
van Eijk, L., Hansell, N. K., Strike, L. T., Couvy-Duchesne, B., de Zubicaray, G. I., Thompson, P. M., … Wright, M. J. (2020). Region-specific sex differences in the hippocampus. NeuroImage, 215, 116781. doi: 10.1016/j.neuroimage.2020.116781CrossRefGoogle ScholarPubMed
Van Overwalle, F., & Vandekerckhove, M. (2013). Implicit and explicit social mentalizing: Dual processes driven by a shared neural network. Frontiers in Human Neuroscience, 7, 560. doi: 10.3389/fnhum.2013.00560CrossRefGoogle ScholarPubMed
van Zutphen, L., Siep, N., Jacob, G. A., Goebel, R., & Arntz, A. (2015). Emotional sensitivity, emotion regulation and impulsivity in borderline personality disorder: A critical review of fMRI studies. Neuroscience and Biobehavioral Reviews, 51, 6476. doi: 10.1016/j.neubiorev.2015.01.001CrossRefGoogle ScholarPubMed
Visintin, E., De Panfilis, C., Amore, M., Balestrieri, M., Wolf, R. C., & Sambataro, F. (2016). Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies. Journal of Affective Disorders, 204, 262269. doi: 10.1016/j.jad.2016.07.025CrossRefGoogle ScholarPubMed
Westlund Schreiner, M., Klimes-Dougan, B., Mueller, B. A., Nelson, K. J., Lim, K. O., & Cullen, K. R. (2019). Neurocircuitry associated with symptom dimensions at baseline and with change in borderline personality disorder. Psychiatry Research: Neuroimaging, 290, 5865. doi: 10.1016/j.pscychresns.2019.07.001CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 4976. doi: 10.1146/annurev-clinpsy-032511-143049CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125141. doi: 10.1089/brain.2012.0073CrossRefGoogle Scholar
Widiger, T. A., & Rogers, J. H. (1989). Prevalence and comorbidity of personality disorders. Psychiatric Annals, 19(3), 132136. doi: 10.3928/0048-5713-19890301-07CrossRefGoogle Scholar
Wittchen, H. U., Zaudig, M., & Fydrich, T. (1997). SKID Strukturiertes klinisches interview für DSM-IV. Achse I und II. Göttingen: Hogrefe, DM. 158.Google Scholar
Wolf, R. C., Sambataro, F., Vasic, N., Schmid, M., Thomann, P. A., Bienentreu, S. D., & Wolf, N. D. (2011). Aberrant connectivity of resting-state networks in borderline personality disorder. Journal of Psychiatry and Neuroscience, 36(6), 402411. doi: 10.1503/jpn.100150CrossRefGoogle ScholarPubMed
World Health Organization (2018). International Classification of Diseases for mortality and morbidity statistics (11th revision)- Clinical Descriptions and Diagnostic Guidelines for Mental and Behavioural Disorders. Retrieved from Scholar
Wrege, J., Ruocco, A. C., Euler, S., Preller, K., Busmann, M., Meya, L., … Walter, M. (2019). Negative affect moderates the effect of social rejection on frontal and anterior cingulate cortex activation in borderline personality disorder. Cognitive, Affective, & Behavioral Neuroscience, 19, 12731285. doi: 10.3758/s13415-019-00716-0CrossRefGoogle ScholarPubMed
Wright, A. G., Hopwood, C. J., Skodol, A. E., & Morey, L. C. (2016). Longitudinal validation of general and specific structural features of personality pathology. Journal of Abnormal Psychology, 125(8), 11201134. doi: 10.1037/abn0000165CrossRefGoogle ScholarPubMed
Wright, A. G., Thomas, K. M., Hopwood, C. J., Markon, K. E., Pincus, A. L., & Krueger, R. F. (2012). The hierarchical structure of DSM-5 pathological personality traits. Journal of Abnormal Psychology, 121(4), 951957. doi: 10.1037/a0027669CrossRefGoogle ScholarPubMed
Yang, W., Cun, L., Du, X., Yang, J., Wang, Y., Wie, D., … Qiu, J. (2015). Gender differences in brain structure and resting-state connectivity related to narcissistic personality. Scientific Reports, 5, 10924. Retrieved from: ScholarPubMed
Zhu, Y., Tang, Y., Zhang, T., Li, H., Tang, Y., Li, C., … Wang, J. (2017). Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder. BMC Psychiatry, 17, 48. doi: 10.1186/s12888-016-1146-5CrossRefGoogle ScholarPubMed
Zimmermann, J., Benecke, C., Bender, D. S., Skodol, A. E., Schauenburg, H., Cierpka, M., & Leising, D. (2014). Assessing DSM-5 level of personality functioning from videotaped clinical interviews: A pilot study with untrained and clinically inexperienced students. Journal of Personality Assessment, 96(4), 397409. doi: 10.1080/00223891.2013.852563CrossRefGoogle ScholarPubMed
Zimmermann, J., Böhnke, J. R., Eschstruth, R., Mathews, A., Wenzel, K., & Leising, D. (2015). The latent structure of personality functioning: Investigating criterion a from the alternative model for personality disorders in DSM–5. Journal of Abnormal Psychology, 124, 532548. doi: 10.1037/abn0000059CrossRefGoogle ScholarPubMed
Supplementary material: File

Traynor et al. supplementary material

Tables S1-S3

Download Traynor et al. supplementary material(File)
File 32 KB