Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-31T03:26:07.769Z Has data issue: false hasContentIssue false

Genetic correlations between suicide attempts and psychiatric and intermediate phenotypes adjusting for mental disorders

Published online by Cambridge University Press:  10 August 2023

Daisuke Fujikane
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Kazutaka Ohi*
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
Ayumi Kuramitsu
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Kentaro Takai
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Yukimasa Muto
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Shunsuke Sugiyama
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Toshiki Shioiri
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
*
Corresponding author: Kazutaka Ohi; Email: k_ohi@gifu-u.ac.jp

Abstract

Background

Suicide attempts are a moderately heritable trait, and genetic correlations with psychiatric and related intermediate phenotypes have been reported. However, as several mental disorders as well as major depressive disorder (MDD) are strongly associated with suicide attempts, these genetic correlations could be mediated by psychiatric disorders. Here, we investigated genetic correlations of suicide attempts with psychiatric and related intermediate phenotypes, with and without adjusting for mental disorders.

Methods

To investigate the genetic correlations, we utilized large-scale genome-wide association study summary statistics for suicide attempts (with and without adjusting for mental disorders), nine psychiatric disorders, and 15 intermediate phenotypes.

Results

Without adjusting for mental disorders, suicide attempts had significant positive genetic correlations with risks of attention-deficit/hyperactivity disorder, schizophrenia, bipolar disorder, MDD, anxiety disorders and posttraumatic stress disorder; higher risk tolerance; earlier age at first sexual intercourse, at first birth and at menopause; higher parity; lower childhood IQ, educational attainment and cognitive ability; and lower smoking cessation. After adjusting for mental disorders, suicide attempts had significant positive genetic correlations with the risk of MDD; earlier age at first sexual intercourse, at first birth and at menopause; and lower educational attainment. After adjusting for mental disorders, most of the genetic correlations with psychiatric disorders were decreased, while several genetic correlations with intermediate phenotypes were increased.

Conclusions

These findings highlight the importance of considering mental disorders in the analysis of genetic correlations related to suicide attempts and suggest that susceptibility to MDD, reproductive behaviors, and lower educational levels share a genetic basis with suicide attempts after adjusting for mental disorders.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, P. D., Askland, K. D., Barlassina, C., Bellodi, L., Bienvenu, O. J., Black, D., … Zai, G. (2018). Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Molecular Psychiatry, 23(5), 11811188. doi: 10.1038/mp.2017.154Google Scholar
Bachmann, S. (2018). Epidemiology of suicide and the psychiatric perspective. International Journal of Environmental Research and Public Health, 15(7), 1425. doi: 10.3390/ijerph15071425.Google Scholar
Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J. J., Tropf, F. C., … Mills, M. C. (2016). Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 48(12), 14621472. doi: 10.1038/ng.3698Google Scholar
Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., … Visscher, P. M. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19(2), 253258. doi: 10.1038/mp.2012.184Google Scholar
Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., … Neale, B. M. (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47(3), 291295. doi: 10.1038/ng.3211Google Scholar
Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., … Deary, I. J. (2018). Study of 300486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9(1), 2098. doi: 10.1038/s41467-018-04362-xGoogle Scholar
Demontis, D., Walters, G. B., Athanasiadis, G., Walters, R., Therrien, K., Nielsen, T. T., … Børglum, A. D. (2023). Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nature Genetics, 55(2), 198208. doi: 10.1038/s41588-022-01285-8Google Scholar
Duncan, L., Yilmaz, Z., Gaspar, H., Walters, R., Goldstein, J., Anttila, V., … Bulik, C. M. (2017). Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. American Journal of Psychiatry, 174(9), 850858. doi: 10.1176/appi.ajp.2017.16121402Google Scholar
Erlangsen, A., Appadurai, V., Wang, Y., Turecki, G., Mors, O., Werge, T., … Agerbo, E. (2020). Genetics of suicide attempts in individuals with and without mental disorders: A population-based genome-wide association study. Molecular Psychiatry, 25(10), 24102421. doi: 10.1038/s41380-018-0218-yGoogle Scholar
Fu, Q., Heath, A. C., Bucholz, K. K., Nelson, E. C., Glowinski, A. L., Goldberg, J., … Eisen, S. A. (2002). A twin study of genetic and environmental influences on suicidality in men. Psychological Medicine, 32(1), 1124. doi: 10.1017/s0033291701004846Google Scholar
Furberg, H., Kim, Y., Dackor, J., Boerwinkle, E., Franceschini, N., Ardissino, D., … Sullivan, P. F. (2010). Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nature Genetics, 42(5), 441447. doi: 10.1038/ng.571Google Scholar
Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., … Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51(3), 431444. doi: 10.1038/s41588-019-0344-8CrossRefGoogle ScholarPubMed
Karlsson Linnér, R., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., … Beauchamp, J. P. (2019). Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 51(2), 245257. doi: 10.1038/s41588-018-0309-3Google Scholar
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 11121121. doi: 10.1038/s41588-018-0147-3Google Scholar
Lewis, S. A., Johnson, J., Cohen, P., Garcia, M., & Velez, C. N. (1988). Attempted suicide in youth: Its relationship to school achievement, educational goals, and socioeconomic status. Journal of Abnormal Child Psychology, 16(4), 459471. doi: 10.1007/bf00914175Google Scholar
Li, Q. S., Shabalin, A. A., DiBlasi, E., Gopal, S., Canuso, C. M., Palotie, A., … Coon, H. (2023). Genome-wide association study meta-analysis of suicide death and suicidal behavior. Molecular Psychiatry, 28(2), 891900. doi: 10.1038/s41380-022-01828-9.Google Scholar
Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D. M., Chen, F., … Vrieze, S. (2019). Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nature Genetics, 51(2), 237244. doi: 10.1038/s41588-018-0307-5Google Scholar
Loh, P. R., Kichaev, G., Gazal, S., Schoech, A. P., & Price, A. L. (2018). Mixed-model association for biobank-scale datasets. Nature Genetics, 50(7), 906908. doi: 10.1038/s41588-018-0144-6Google Scholar
Luciano, M., Hagenaars, S. P., Davies, G., Hill, W. D., Clarke, T. K., Shirali, M., … Deary, I. J. (2018). Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nature Genetics, 50(1), 611. doi: 10.1038/s41588-017-0013-8Google Scholar
Mills, M. C., Tropf, F. C., Brazel, D. M., van Zuydam, N., Vaez, A., Pers, T. H., … Day, F. R. (2021). Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nature Human Behaviour, 5(12), 17171730. doi: 10.1038/s41562-021-01135-3Google Scholar
Mota, N. P., Cox, B. J., Katz, L. Y., & Sareen, J. (2010). Relationship between mental disorders/suicidality and three sexual behaviors: Results from the national comorbidity survey replication. Archives of Sexual Behavior, 39(3), 724734. doi: 10.1007/s10508-008-9463-5Google Scholar
Mullins, N., Forstner, A. J., O'Connell, K. S., Coombes, B., Coleman, J. R. I., Qiao, Z., … Andreassen, O. A. (2021). Genome-wide association study of more than 40000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 53(6), 817829. doi: 10.1038/s41588-021-00857-4Google Scholar
Mullins, N., Kang, J., Campos, A. I., Coleman, J. R. I., Edwards, A. C., Galfalvy, H., … Ruderfer, D. M. (2022). Dissecting the shared genetic architecture of suicide attempt, psychiatric disorders, and known risk factors. Biological Psychiatry, 91(3), 313327. doi: 10.1016/j.biopsych.2021.05.029Google Scholar
Nievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C. Y., Choi, K. W., … Koenen, K. C. (2019). International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 10(1), 4558. doi: 10.1038/s41467-019-12576-wGoogle Scholar
Ohi, K., Kuramitsu, A., Fujikane, D., Takai, K., Sugiyama, S., & Shioiri, T. (2022a). Shared genetic basis between reproductive behaviors and anxiety-related disorders. Molecular Psychiatry, 27(10), 41034112. doi: 10.1038/s41380-022-01667-8Google Scholar
Ohi, K., Muto, Y., Takai, K., Sugiyama, S., & Shioiri, T. (2022b). Investigating genetic overlaps of the genetic factor differentiating schizophrenia from bipolar disorder with cognitive function and hippocampal volume. BJPsych Open, 8(1), e33. doi: 10.1192/bjo.2021.1086Google Scholar
Ohi, K., Otowa, T., Shimada, M., Sasaki, T., & Tanii, H. (2020a). Shared genetic etiology between anxiety disorders and psychiatric and related intermediate phenotypes. Psychological Medicine, 50(4), 692704. doi: 10.1017/s003329171900059xGoogle Scholar
Ohi, K., Shimada, T., Kataoka, Y., Yasuyama, T., Kawasaki, Y., Shioiri, T., & Thompson, P. M. (2020b). Genetic correlations between subcortical brain volumes and psychiatric disorders. British Journal of Psychiatry, 216(5), 280283. doi: 10.1192/bjp.2019.277Google Scholar
Okbay, A., Baselmans, B. M., De Neve, J. E., Turley, P., Nivard, M. G., Fontana, M. A., … Cesarini, D. (2016). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 48(6), 624633. doi: 10.1038/ng.3552Google Scholar
Purves, K. L., Coleman, J. R. I., Meier, S. M., Rayner, C., Davis, K. A. S., Cheesman, R., … Eley, T. C. (2020). A major role for common genetic variation in anxiety disorders. Molecular Psychiatry, 25(12), 32923303. doi: 10.1038/s41380-019-0559-1Google Scholar
Ruderfer, D. M., Walsh, C. G., Aguirre, M. W., Tanigawa, Y., Ribeiro, J. D., Franklin, J. C., & Rivas, M. A. (2020). Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide. Molecular Psychiatry, 25(10), 24222430. doi: 10.1038/s41380-018-0326-8Google Scholar
Runeson, B., & Asberg, M. (2003). Family history of suicide among suicide victims. American Journal of Psychiatry, 160(8), 15251526. doi: 10.1176/appi.ajp.160.8.1525Google Scholar
Statham, D. J., Heath, A. C., Madden, P. A., Bucholz, K. K., Bierut, L., Dinwiddie, S. H., … Martin, N. G. (1998). Suicidal behaviour: An epidemiological and genetic study. Psychological Medicine, 28(4), 839855. doi: 10.1017/s0033291798006916Google Scholar
Strawbridge, R. J., Ward, J., Ferguson, A., Graham, N., Shaw, R. J., Cullen, B., … Smith, D. J. (2019). Identification of novel genome-wide associations for suicidality in UK Biobank, genetic correlation with psychiatric disorders and polygenic association with completed suicide. EBioMedicine, 41, 517525. doi: 10.1016/j.ebiom.2019.02.005Google Scholar
Tidemalm, D., Runeson, B., Waern, M., Frisell, T., Carlström, E., Lichtenstein, P., & Långström, N. (2011). Familial clustering of suicide risk: A total population study of 11.4 million individuals. Psychological Medicine, 41(12), 25272534. doi: 10.1017/s0033291711000833Google Scholar
Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., … O'Donovan, M. C. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 604(7906), 502508. doi: 10.1038/s41586-022-04434-5Google Scholar
van den Berg, S. M., de Moor, M. H., Verweij, K. J., Krueger, R. F., Luciano, M., Arias Vasquez, A., … Boomsma, D. I. (2016). Meta-analysis of genome-wide association studies for extraversion: Findings from the genetics of personality consortium. Behavior Genetics, 46(2), 170182. doi: 10.1007/s10519-015-9735-5Google Scholar
WHO. (2019). Summary tables of mortality estimates by cause, age and sex, globally and by region, 2000–2016. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-deathGoogle Scholar
Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., … Sullivan, P. F. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50(5), 668681. doi: 10.1038/s41588-018-0090-3Google Scholar