Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-07T13:21:45.271Z Has data issue: false hasContentIssue false

Early-treatment cerebral blood flow change as a predictive biomarker of antidepressant treatment response: evidence from the EMBARC clinical trial

Published online by Cambridge University Press:  09 May 2024

Yi Dang
Affiliation:
Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
Bin Lu
Affiliation:
CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
Tamara Vanderwal
Affiliation:
Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada BC Children's Hospital Research Institute, Vancouver, BC, Canada
Francisco Xavier Castellanos
Affiliation:
Department of Child and Adolescent Psychiatry, NYU Robert I. Grossman School of Medicine, New York, NY, USA Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
Chao-Gan Yan*
Affiliation:
Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
*
Corresponding author: Chao-Gan Yan; Email: yancg@psych.ac.cn

Abstract

Background

Major depressive disorder (MDD) is one of the most prevalent and disabling illnesses worldwide. Treatment of MDD typically relies on trial-and-error to find an effective approach. Identifying early response-related biomarkers that predict response to antidepressants would help clinicians to decide, as early as possible, whether a particular treatment might be suitable for a given patient.

Methods

Data were from the two-stage Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) trial. A whole-brain, voxel-wise, mixed-effects model was applied to identify early-treatment cerebral blood flow (CBF) changes as biomarkers of treatment response. We examined changes in CBF measured with arterial spin labeling 1-week after initiating double-masked sertraline/placebo. We tested whether these early 1-week scans could be used to predict response observed after 8-weeks of treatment.

Results

Response to 8-week placebo treatment was associated with increased cerebral perfusion in temporal cortex and reduced cerebral perfusion in postcentral region captured at 1-week of treatment. Additionally, CBF response in these brain regions was significantly correlated with improvement in Hamilton Depression Rating Scale score in the placebo group. No significant associations were found for selective serotonin reuptake inhibitor treatment.

Conclusions

We conclude that early CBF responses to placebo administration in multiple brain regions represent candidate neural biomarkers of longer-term antidepressant effects.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adebimpe, A., Bertolero, M., Dolui, S., Cieslak, M., Murtha, K., Baller, E. B., … Satterthwaite, T. D. (2022). ASLPrep: A platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nature Methods, 19(6), 683686.10.1038/s41592-022-01458-7CrossRefGoogle ScholarPubMed
Alsop, D. C., Detre, J. A., Golay, X., Günther, M., Hendrikse, J., Hernandez-Garcia, L., … Zaharchuk, G. (2015). Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine, 73(1), 102116.10.1002/mrm.25197CrossRefGoogle Scholar
Bokkers, R. P., Hernandez, D. A., Merino, J. G., Mirasol, R. V., Van Osch, M. J., Hendrikse, J., … Latour, L. L. (2012). Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke, 43(5), 12901294.10.1161/STROKEAHA.110.589234CrossRefGoogle ScholarPubMed
Breitenstein, B., Scheuer, S., & Holsboer, F. (2014). Are there meaningful biomarkers of treatment response for depression? Drug Discovery Today, 19(5), 539561.CrossRefGoogle ScholarPubMed
Cavaleri, D., Moretti, F., Bartoccetti, A., Mauro, S., Crocamo, C., Carrà, G., & Bartoli, F. (2023). The role of BDNF in major depressive disorder, related clinical features, and antidepressant treatment: Insight from meta-analyses. Neuroscience & Biobehavioral Reviews, 149, 105159.10.1016/j.neubiorev.2023.105159CrossRefGoogle ScholarPubMed
Chen, Y., Wan, H., O'Reardon, J., Wang, D., Wang, Z., Korczykowski, M., & Detre, J. (2011). Quantification of cerebral blood flow as biomarker of drug effect: Arterial spin labeling phMRI after a single dose of oral citalopram. Clinical Pharmacology & Therapeutics, 89(2), 251258.CrossRefGoogle ScholarPubMed
Chen, Z. Q., Du, M. Y., Zhao, Y. J., Huang, X. Q., Li, J., Lui, S., … Gong, Q. Y. (2015). Voxel-wise meta-analyses of brain blood flow and local synchrony abnormalities in medication-free patients with major depressive disorder. Journal of Psychiatry and Neuroscience, 40(6), 401411.CrossRefGoogle ScholarPubMed
Chithiramohan, T., Parekh, J. N., Kronenberg, G., Haunton, V. J., Minhas, J. S., Panerai, R. B., … Beishon, L. (2022). Investigating the association between depression and cerebral haemodynamics—A systematic review and meta-analysis. Journal of Affective Disorders, 299, 144158.CrossRefGoogle ScholarPubMed
Cipriani, A., La Ferla, T., Furukawa, T. A., Signoretti, A., Nakagawa, A., Churchill, R., … Barbui, C. (2010). Sertraline versus other antidepressive agents for depression. Cochrane Database of Systematic Reviews, 4, CD006117.Google Scholar
Cooper, C. M., Fatt, C. R. C., Jha, M., Fonzo, G. A., Grannemann, B. D., Carmody, T., … Trivedi, M. H. (2019). Cerebral blood perfusion predicts response to sertraline versus placebo for major depressive disorder in the EMBARC trial. EClinicalMedicine, 10, 3241.10.1016/j.eclinm.2019.04.007CrossRefGoogle ScholarPubMed
Cooper, C. M., Fatt, C. R. C., Liu, P., Grannemann, B. D., Carmody, T., Almeida, J. R., … Trivedi, M. H. (2020). Discovery and replication of cerebral blood flow differences in major depressive disorder. Molecular Psychiatry, 25(7), 15001510.10.1038/s41380-019-0464-7CrossRefGoogle ScholarPubMed
Daou, M. A. Z., Boyd, B. D., Donahue, M. J., Albert, K., & Taylor, W. D. (2017). Frontocingulate cerebral blood flow and cerebrovascular reactivity associated with antidepressant response in late-life depression. Journal of Affective Disorders, 215, 103110.CrossRefGoogle Scholar
Dolui, S., Wolf, R., Nabavizadeh, S., Wolk, D., & Detre, J. (2017, April). Automated Quality Evaluation Index for 2D ASL CBF Maps. Poster presented at the 25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, Honolulu, the United States.Google Scholar
Drevets, W. C., Bogers, W., & Raichle, M. E. (2002). Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. European Neuropsychopharmacology, 12(6), 527544.CrossRefGoogle ScholarPubMed
Dunlop, B. W., & Mayberg, H. S. (2014). Neuroimaging-based biomarkers for treatment selection in major depressive disorder. Dialogues in Clinical Neuroscience, 16(4), 479490.10.31887/DCNS.2014.16.4/bdunlopCrossRefGoogle ScholarPubMed
Dunlop, K., Talishinsky, A., & Liston, C. (2019). Intrinsic brain network biomarkers of antidepressant response: A review. Current Psychiatry Reports, 21, 111.CrossRefGoogle ScholarPubMed
Fan, S., Nemati, S., Akiki, T. J., Roscoe, J., Averill, C. L., Fouda, S., … Abdallah, C. G. (2020). Pretreatment brain connectome fingerprint predicts treatment response in major depressive disorder. Chronic Stress, 4, 2470547020984726.CrossRefGoogle ScholarPubMed
Fatt, C. R. C., Cooper, C., Jha, M. K., Aslan, S., Grannemann, B., Kurian, B., … Trivedi, M. H. (2021a). Dorsolateral prefrontal cortex and subcallosal cingulate connectivity show preferential antidepressant response in major depressive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(1), 2028.Google Scholar
Fatt, C. R. C., Cooper, C. M., Jha, M. K., Minhajuddin, A., Rush, A. J., Trombello, J. M., … Trivedi, M. H. (2021b). Differential response to SSRI versus Placebo and distinct neural signatures among data-driven subgroups of patients with major depressive disorder. Journal of Affective Disorders, 282, 602610.CrossRefGoogle Scholar
Fatt, C. R. C., Jha, M. K., Cooper, C. M., Fonzo, G., South, C., Grannemann, B., … Trivedi, M. H. (2020). Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression. American Journal of Psychiatry, 177(2), 143154.10.1176/appi.ajp.2019.18070870CrossRefGoogle Scholar
Gautam, S., Jain, A., Gautam, M., Vahia, V. N., & Grover, S. (2017). Clinical practice guidelines for the management of depression. Indian Journal of Psychiatry, 59(Suppl 1), S34S50.Google ScholarPubMed
Gaynes, B. N., Warden, D., Trivedi, M. H., Wisniewski, S. R., Fava, M., & Rush, A. J. (2009). What did STAR* D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatric Services, 60(11), 14391445.CrossRefGoogle Scholar
Ghariq, E., Chappell, M. A., Schmid, S., Teeuwisse, W. M., & van Osch, M. J. P. (2014). Effects of background suppression on the sensitivity of dual-echo arterial spin labeling MRI for BOLD and CBF signal changes. NeuroImage, 103, 316322.CrossRefGoogle ScholarPubMed
Godlewska, B., Browning, M., Norbury, R., Cowen, P. J., & Harmer, C. J. (2016). Early changes in emotional processing as a marker of clinical response to SSRI treatment in depression. Translational Psychiatry, 6(11), e957e957.CrossRefGoogle ScholarPubMed
Greenberg, T., Fournier, J. C., Stiffler, R., Chase, H. W., Almeida, J. R., Aslam, H., … Phillips, M. L. (2020). Reward related ventral striatal activity and differential response to sertraline versus placebo in depressed individuals. Molecular Psychiatry, 25(7), 15261536.CrossRefGoogle ScholarPubMed
Grieve, S. M., Korgaonkar, M. S., Koslow, S. H., Gordon, E., & Williams, L. M. (2013). Widespread reductions in gray matter volume in depression. NeuroImage: Clinical, 3, 332339.CrossRefGoogle ScholarPubMed
Hamilton, M. (1986). The Hamilton rating scale for depression. In Sartorius, N., & Ban, T. A. (Eds.), Assessment of depression (pp. 143152). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
He, Z., Sheng, W., Lu, F., Long, Z., Han, S., Pang, Y., … Chen, H. (2019). Altered resting-state cerebral blood flow and functional connectivity of striatum in bipolar disorder and major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 90, 177185.CrossRefGoogle ScholarPubMed
Holtzheimer, P. E., & Mayberg, H. S. (2011). Stuck in a rut: Rethinking depression and its treatment. Trends in Neurosciences, 34(1), 19.CrossRefGoogle Scholar
Kang, L., Zhang, A., Sun, N., Liu, P., Yang, C., Li, G., … Zhang, K. (2018). Functional connectivity between the thalamus and the primary somatosensory cortex in major depressive disorder: A resting-state fMRI study. BMC Psychiatry, 18, 339.CrossRefGoogle ScholarPubMed
Kang, S. G., & Cho, S. E. (2020). Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder. International Journal of Molecular Sciences, 21(6), 2148.CrossRefGoogle ScholarPubMed
Koban, L., Kross, E., Woo, C. W., Ruzic, L., & Wager, T. D. (2017). Frontal-brainstem pathways mediating placebo effects on social rejection. Journal of Neuroscience, 37(13), 36213631.CrossRefGoogle ScholarPubMed
Kofod, J., Elfving, B., Nielsen, E. H., Mors, O., & Köhler-Forsberg, O. (2022). Depression and inflammation: Correlation between changes in inflammatory markers with antidepressant response and long-term prognosis. European Neuropsychopharmacology, 54, 116125.CrossRefGoogle ScholarPubMed
Leaver, A. M., Vasavada, M., Kubicki, A., Wade, B., Loureiro, J., Hellemann, G., … Narr, K. L. (2021). Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy. Molecular Psychiatry, 26(8), 42884299.CrossRefGoogle ScholarPubMed
Leuchter, A. F., Cook, I. A., Witte, E. A., Morgan, M., & Abrams, M. (2002). Changes in brain function of depressed subjects during treatment with placebo. American Journal of Psychiatry, 159(1), 122129.10.1176/appi.ajp.159.1.122CrossRefGoogle ScholarPubMed
Liu, Y., Zhu, X., Feinberg, D., Guenther, M., Gregori, J., Weiner, M. W., & Schuff, N. (2012). Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magnetic Resonance in Medicine, 68(3), 912922.10.1002/mrm.23286CrossRefGoogle ScholarPubMed
Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), e442.CrossRefGoogle ScholarPubMed
McGrath, C. L., Kelley, M. E., Holtzheimer, P. E., Dunlop, B. W., Craighead, W. E., Franco, A. R., … Mayberg, H. S. (2013). Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry, 70(8), 821829.CrossRefGoogle Scholar
Moonen, J. E., Nasrallah, I. M., Detre, J. A., Dolui, S., Erus, G., Davatzikos, C., … Launer, L. J. (2020). Race and sex differences in midlife changes in cerebral volume and perfusion: Neuroimaging: Sex and ethnoracial differences–biomarkers. Alzheimer's & Dementia, 16, e040248.CrossRefGoogle Scholar
Nguyen, K. P., Fatt, C. R. C., Treacher, A., Mellema, C., Cooper, C., Jha, M. K., … Montillo, A. A. (2022). Patterns of pretreatment reward task brain activation predict individual antidepressant response: Key results from the EMBARC randomized clinical trial. Biological Psychiatry, 91(6), 550560.CrossRefGoogle ScholarPubMed
Nierenberg, A. A. (2003). Predictors of response to antidepressants: General principles and clinical implications. Psychiatric Clinics, 26(2), 345352.Google ScholarPubMed
Orosz, A., Jann, K., Federspiel, A., Horn, H., Höfle, O., Dierks, T., … Walther, S. (2012). Reduced cerebral blood flow within the default-mode network and within total gray matter in major depression. Brain Connectivity, 2(6), 303310.CrossRefGoogle ScholarPubMed
Peng, W., Chen, Z., Yin, L., Jia, Z., & Gong, Q. (2016). Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients. Journal of Affective Disorders, 199, 114123.CrossRefGoogle ScholarPubMed
Quitkin, F. M., Rabkin, J. D., Markowitz, J. M., Stewart, J. W., McGrath, P. J., & Harrison, W. (1987). Use of pattern analysis to identify true drug response: A replication. Archives of General Psychiatry, 44(3), 259264.CrossRefGoogle ScholarPubMed
Riedl, V., Bienkowska, K., Strobel, C., Tahmasian, M., Grimmer, T., Förster, S., … Drzezga, A. (2014). Local activity determines functional connectivity in the resting human brain: A simultaneous FDG-PET/fMRI study. Journal of Neuroscience, 34(18), 62606266.10.1523/JNEUROSCI.0492-14.2014CrossRefGoogle Scholar
Rief, W., Nestoriuc, Y., Weiss, S., Welzel, E., Barsky, A. J., & Hofmann, S. G. (2009). Meta-analysis of the placebo response in antidepressant trials. Journal of Affective Disorders, 118(1–3), 18.CrossRefGoogle ScholarPubMed
Smith, D. J., & Cavanagh, J. T. (2005). The use of single photon emission computed tomography in depressive disorders. Nuclear Medicine Communications, 26(3), 197203.CrossRefGoogle ScholarPubMed
Su, L., Shi, S., Guan, Y., Zuo, C., & Zhang, M. (2006). Analysis of brain position emission tomography mapping in geriatric depression patients. Chinese Journal of Psychiatry, 39(2), 8184.Google Scholar
Szegedi, A., Jansen, W. T., van Willigenburg, A. P., van der Meulen, E., Stassen, H. H., & Thase, M. E. (2009). Early improvement in the first 2 weeks as a predictor of treatment outcome in patients with major depressive disorder: A meta-analysis including 6562 patients. Journal of Clinical Psychiatry, 70(3), 344353.CrossRefGoogle ScholarPubMed
Tarumi, T., & Zhang, R. (2018). Cerebral blood flow in normal aging adults: Cardiovascular determinants, clinical implications, and aerobic fitness. Journal of Neurochemistry, 144(5), 595608.CrossRefGoogle ScholarPubMed
Trivedi, M. H., McGrath, P. J., Fava, M., Parsey, R. V., Kurian, B. T., Phillips, M. L., … Weissman, M. M. (2016). Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. Journal of Psychiatric Research, 78, 1123.CrossRefGoogle ScholarPubMed
van Eijndhoven, P., van Wingen, G., Katzenbauer, M., Groen, W., Tepest, R., Fernández, G., … Tendolkar, I. (2013). Paralimbic cortical thickness in first-episode depression: Evidence for trait-related differences in mood regulation. American Journal of Psychiatry, 170(12), 14771486.CrossRefGoogle ScholarPubMed
Várkuti, B., Cavusoglu, M., Kullik, A., Schiffler, B., Veit, R., Yilmaz, Ö, … Sitaram, R. (2011). Quantifying the link between anatomical connectivity, gray matter volume and regional cerebral blood flow: An integrative MRI study. PLoS One, 6(4), e14801.CrossRefGoogle ScholarPubMed
Victor, T. A., Furey, M. L., Fromm, S. J., Öhman, A., & Drevets, W. C. (2010). Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Archives of General Psychiatry, 67(11), 11281138.CrossRefGoogle ScholarPubMed
Vlassenko, A., Sheline, Y. I., Fischer, K., & Mintun, M. A. (2004). Cerebral perfusion response to successful treatment of depression with different serotoninergic agents. Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 360363.CrossRefGoogle ScholarPubMed
Wager, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects: Connecting context, learning and health. Nature Reviews Neuroscience, 16(7), 403418.CrossRefGoogle ScholarPubMed
Wang, D. J., Alger, J. R., Qiao, J. X., Hao, Q., Hou, S., & Fiaz, R., … UCLA Stroke Investigators. (2012). The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: Comparison with dynamic susceptibility contrast-enhanced MRI. Stroke, 43(4), 10181024.CrossRefGoogle ScholarPubMed
Warden, D., Rush, A. J., Trivedi, M. H., Fava, M., & Wisniewski, S. R. (2007). The STAR*D project results: A comprehensive review of findings. Current Psychiatry Reports, 9(6), 449459.CrossRefGoogle ScholarPubMed
Watanabe, N., & Takeda, M. (2022). Neurophysiological dynamics for psychological resilience: A view from the temporal axis. Neuroscience Research, 175, 5361.CrossRefGoogle ScholarPubMed
Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T. M., … Arnone, D. (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Molecular Psychiatry, 22(10), 14551463.CrossRefGoogle ScholarPubMed
Wisniewski, S. R., Rush, A. J., Balasubramani, G., Trivedi, M. H., & Nierenberg, A. A., & STAR*D Investigators. (2006). Self-rated global measure of the frequency, intensity, and burden of side effects. Journal of Psychiatric Practice, 12(2), 7179.CrossRefGoogle ScholarPubMed
Yan, C., Wang, X., Zuo, X., & Zang, Y. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351.CrossRefGoogle ScholarPubMed
Yan, C., & Zang, Y. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.Google Scholar
Yin, Y., Wang, M., Wang, Z., Xie, C., Zhang, H., Zhang, H., … Yuan, Y. (2018). Decreased cerebral blood flow in the primary motor cortex in major depressive disorder with psychomotor retardation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 81, 438444.CrossRefGoogle ScholarPubMed
Zhang, D., Snyder, A. Z., Fox, M. D., Sansbury, M. W., Shimony, J. S., & Raichle, M. E. (2008). Intrinsic functional relations between human cerebral cortex and thalamus. Journal of Neurophysiology, 100(4), 17401748.CrossRefGoogle ScholarPubMed
Zhang, D., Snyder, A. Z., Shimony, J. S., Fox, M. D., & Raichle, M. E. (2010). Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cerebral Cortex, 20(5), 11871194.CrossRefGoogle ScholarPubMed