Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T16:23:36.074Z Has data issue: false hasContentIssue false

The effects of childhood maltreatment on cortical thickness and gray matter volume: a coordinate-based meta-analysis

Published online by Cambridge University Press:  22 March 2023

Wei Yang
Affiliation:
Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
Shushu Jin
Affiliation:
Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
Weiwei Duan
Affiliation:
School of Mental Health, Jining Medical University, Jining, China
Hao Yu
Affiliation:
School of Mental Health, Jining Medical University, Jining, China
Liangliang Ping
Affiliation:
Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
Zonglin Shen
Affiliation:
Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
Yuqi Cheng
Affiliation:
Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
Xiufeng Xu
Affiliation:
Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
Cong Zhou*
Affiliation:
Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China School of Mental Health, Jining Medical University, Jining, China
*
Author for correspondence: Cong Zhou, E-mail: doctorzhoucong@163.com

Abstract

Childhood maltreatment has been suggested to have an adverse impact on neurodevelopment, including microstructural brain abnormalities. Existing neuroimaging findings remain inconsistent and heterogeneous. We aim to explore the most prominent and robust cortical thickness (CTh) and gray matter volume (GMV) alterations associated with childhood maltreatment. A systematic search on relevant studies was conducted through September 2022. The whole-brain coordinate-based meta-analysis (CBMA) on CTh and GMV studies were conducted using the seed-based d mapping (SDM) software. Meta-regression analysis was subsequently applied to investigate potential associations between clinical variables and structural changes. A total of 45 studies were eligible for inclusion, including 11 datasets on CTh and 39 datasets on GMV, consisting of 2550 participants exposed to childhood maltreatment and 3739 unexposed comparison subjects. Individuals with childhood maltreatment exhibited overlapped deficits in the median cingulate/paracingulate gyri simultaneously revealed by both CTh and GM studies. Regional cortical thinning in the right anterior cingulate/paracingulate gyri and the left middle frontal gyrus, as well as GMV reductions in the left supplementary motor area (SMA) was also identified. No greater regions were found for either CTh or GMV. In addition, several neural morphology changes were associated with the average age of the maltreated individuals. The median cingulate/paracingulate gyri morphology might serve as the most robust neuroimaging feature of childhood maltreatment. The effects of early-life trauma on the human brain predominantly involved in cognitive functions, socio-affective functioning and stress regulation. This current meta-analysis enhanced the understanding of neuropathological changes induced by childhood maltreatment.

Type
Review Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksić, M., Radonjić, N. V., Aleksić, D., Jevtić, G., Marković, B., Petronijević, N., … Filipović, B. (2013). Long-term effects of the maternal deprivation on the volume and number of neurons in the rat neocortex and hippocampus. Acta Neurobiologiae Experimentalis, 73(3), 394403.Google ScholarPubMed
Albajes-Eizagirre, A., & Radua, J. (2018). What do results from coordinate-based meta-analyses tell us? NeuroImage, 176, 550553. doi: 10.1016/j.neuroimage.2018.04.065CrossRefGoogle ScholarPubMed
Albajes-Eizagirre, A., Solanes, A., Vieta, E., & Radua, J. (2019). Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM. NeuroImage, 186, 174184. doi: 10.1016/j.neuroimage.2018.10.077CrossRefGoogle ScholarPubMed
Aminoff, E., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17(8), 379390. doi: 10.1016/j.tics.2013.06.009CrossRefGoogle ScholarPubMed
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268277. doi: 10.1038/nrn1884CrossRefGoogle ScholarPubMed
Belvederi Murri, M., Ekkekakis, P., Magagnoli, M., Zampogna, D., Cattedra, S., Capobianco, L., … Amore, M. (2018). Physical exercise in major depression: Reducing the mortality gap while improving clinical outcomes. Frontiers in Psychiatry, 9, 762. doi: 10.3389/fpsyt.2018.00762CrossRefGoogle ScholarPubMed
Benedetti, F., Poletti, S., Radaelli, D., Pozzi, E., Giacosa, C., Ruffini, C., … Smeraldi, E. (2012). Caudate gray matter volume in obsessive-compulsive disorder is influenced by adverse childhood experiences and ongoing drug treatment. Journal of Clinical Psychopharmacology, 32(4), 544547. doi: 10.1097/JCP.0b013e31825cce05CrossRefGoogle ScholarPubMed
Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., … Alexander-Bloch, A. F. (2022). Brain charts for the human lifespan. Nature, 604(7906), 525533. doi: 10.1038/s41586-022-04554-yCrossRefGoogle ScholarPubMed
Birn, R. M., Patriat, R., Phillips, M. L., Germain, A., & Herringa, R. J. (2014). Childhood maltreatment and combat posttraumatic stress differentially predict fear-related fronto-subcortical connectivity. Depression and Anxiety, 31(10), 880892. doi: 10.1002/da.22291CrossRefGoogle ScholarPubMed
Bounoua, N., Miglin, R., Spielberg, J. M., & Sadeh, N. (2020). Childhood assaultive trauma and physical aggression: Links with cortical thickness in prefrontal and occipital cortices. NeuroImage: Clinical, 27, 102321. doi: 10.1016/j.nicl.2020.102321CrossRefGoogle ScholarPubMed
Bozkurt, B., Yagmurlu, K., Middlebrooks, E. H., Karadag, A., Ovalioglu, T. C., Jagadeesan, B., … Grande, A. W. (2016). Microsurgical and tractographic anatomy of the supplementary motor area complex in humans. World Neurosurgery, 95, 99107. doi: 10.1016/j.wneu.2016.07.072CrossRefGoogle ScholarPubMed
Brito, S. A. D., Viding, E., Sebastian, C. L., Kelly, P. A., Mechelli, A., Maris, H., & McCrory, E. J. (2013). Reduced orbitofrontal and temporal grey matter in a community sample of maltreated children. Journal of Child Psychology and Psychiatry, 54(1), 105112. doi: 10.1111/j.1469-7610.2012.02597.xCrossRefGoogle Scholar
Busso, D. S., McLaughlin, K. A., Brueck, S., Peverill, M., Gold, A. L., & Sheridan, M. A. (2017). Child abuse, neural structure, and adolescent psychopathology: A longitudinal study. Journal of the American Academy of Child and Adolescent Psychiatry, 56(4), 321328, e321. doi: 10.1016/j.jaac.2017.01.013CrossRefGoogle ScholarPubMed
Cancel, A., Dallel, S., Zine, A., El-Hage, W., & Fakra, E. (2019). Understanding the link between childhood trauma and schizophrenia: A systematic review of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 107, 492504. doi: 10.1016/j.neubiorev.2019.05.024CrossRefGoogle ScholarPubMed
Carballedo, A., Lisiecka, D., Fagan, A., Saleh, K., Ferguson, Y., Connolly, G., … Frodl, T. (2012). Early life adversity is associated with brain changes in subjects at family risk for depression. World Journal of Biological Psychiatry, 13(8), 569578. doi: 10.3109/15622975.2012.661079CrossRefGoogle ScholarPubMed
Carrion, V. G., Weems, C. F., Watson, C., Eliez, S., Menon, V., & Reiss, A. L. (2009). Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric posttraumatic stress disorder: An MRI study. Psychiatry Research, 172(3), 226234. doi: 10.1016/j.pscychresns.2008.07.008CrossRefGoogle ScholarPubMed
Cascino, G., Canna, A., Russo, A. G., Monaco, F., Esposito, F., Di Salle, F., … Monteleone, A. M. (2022). Childhood maltreatment is associated with cortical thinning in people with eating disorders. European Archives of Psychiatry and Clinical Neuroscience. doi: 10.1007/s00406-022-01456-yGoogle ScholarPubMed
Chandan, J. S., Keerthy, D., Zemedikun, D. T., Okoth, K., Gokhale, K. M., Raza, K., … Nirantharakumar, K. (2020). The association between exposure to childhood maltreatment and the subsequent development of functional somatic and visceral pain syndromes. EClinicalMedicine, 23, 100392. doi: 10.1016/j.eclinm.2020.100392CrossRefGoogle ScholarPubMed
Chaney, A., Carballedo, A., Amico, F., Fagan, A., Skokauskas, N., Meaney, J., & Frodl, T. (2014). Effect of childhood maltreatment on brain structure in adult patients with major depressive disorder and healthy participants. Journal of Psychiatry & Neuroscience, 39(1), 5059. doi: 10.1503/jpn.120208CrossRefGoogle ScholarPubMed
Colich, N., Rosen, M., Williams, E., & McLaughlin, K. (2020). Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146(9), 721764. doi: 10.1037/bul0000270CrossRefGoogle ScholarPubMed
Corbo, V., Salat, D. H., Amick, M. M., Leritz, E. C., Milberg, W. P., & McGlinchey, R. E. (2014). Reduced cortical thickness in veterans exposed to early life trauma. Psychiatry Research: Neuroimaging, 223(2), 5360. doi: 10.1016/j.pscychresns.2014.04.013CrossRefGoogle ScholarPubMed
Coull, J., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science (New York, N.Y.), 303(5663), 15061508. doi: 10.1126/science.1091573CrossRefGoogle ScholarPubMed
Dam, N. T. V., Rando, K., Potenza, M. N., Tuit, K., & Sinha, R. (2014). Childhood maltreatment, altered limbic neurobiology, and substance use relapse severity via trauma-specific reductions in limbic gray matter volume. JAMA Psychiatry, 71(8), 917925. doi: 10.1001/jamapsychiatry.2014.680Google ScholarPubMed
D'Andrea, G., Lal, J., Tosato, S., Gayer-Anderson, C., Jongsma, H. E., Stilo, S. A., … Morgan, C. (2022). Child maltreatment, migration and risk of first-episode psychosis: Results from the multinational EU-GEI study. Psychological Medicine, 111. doi: 10.1017/S003329172200335XCrossRefGoogle ScholarPubMed
Daniels, J. K., Lamke, J.-P., Gaebler, M., Walter, H., & Scheel, M. (2013). White matter integrity and its relationship to PTSD and childhood trauma--a systematic review and meta-analysis. Depression and Anxiety, 30(3), 207216. doi: 10.1002/da.22044CrossRefGoogle ScholarPubMed
Daniels, J. K., Schulz, A., Schellong, J., Han, P., Rottstadt, F., Diers, K., … Croy, I. (2019). Gray matter alterations associated with dissociation in female survivors of childhood trauma. Frontiers in Psychology, 10, 738. doi: 10.3389/fpsyg.2019.00738CrossRefGoogle ScholarPubMed
Dannlowski, U., Kugel, H., Grotegerd, D., Redlich, R., Opel, N., Dohm, K., … Baune, B. T. (2016). Disadvantage of social sensitivity: Interaction of oxytocin receptor genotype and child maltreatment on brain structure. Biological Psychiatry, 80(5), 398405. doi: 10.1016/j.biopsych.2015.12.010CrossRefGoogle ScholarPubMed
Duarte, D. G., Neves Mde, C., Albuquerque, M. R., de Souza-Duran, F. L., Busatto, G., & Correa, H. (2016). Gray matter brain volumes in childhood-maltreated patients with bipolar disorder type I: A voxel-based morphometric study. Journal of Affective Disorders, 197, 7480. doi: 10.1016/j.jad.2016.02.068CrossRefGoogle Scholar
Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., … Eickhoff, C. R. (2016). Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. NeuroImage, 137, 7085. doi: 10.1016/j.neuroimage.2016.04.072CrossRefGoogle ScholarPubMed
Elton, A., Smitherman, S., Young, J., & Kilts, C. D. (2015). Effects of childhood maltreatment on the neural correlates of stress- and drug cue-induced cocaine craving. Addiction Biology, 20(4), 820831. doi: 10.1111/adb.12162CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 8593. doi: 10.1016/j.tics.2010.11.004CrossRefGoogle ScholarPubMed
Everaerd, D., Klumpers, F., Zwiers, M., Guadalupe, T., Franke, B., van Oostrom, I., … Tendolkar, I. (2016). Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology. Neuropsychopharmacology, 41(7), 17161723. doi: 10.1038/npp.2015.344CrossRefGoogle ScholarPubMed
Fan, J., Liu, W., Xia, J., Gao, F., Meng, C., Han, Y., … Zhu, X. (2022). Childhood trauma is associated with social anhedonia and brain gray matter volume differences in healthy subjects. Brain Imaging and Behavior, 16(5), 19641972. doi: 10.1007/s11682-022-00666-1.CrossRefGoogle ScholarPubMed
Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774781. doi: 10.1016/j.neuroimage.2012.01.021CrossRefGoogle ScholarPubMed
Gao, Y., Jiang, Y., Ming, Q., Zhang, J., Ma, R., Wu, Q., … Yao, S. (2022). Neuroanatomical changes associated with conduct disorder in boys: Influence of childhood maltreatment. European Child & Adolescent Psychiatry, 31(4), 601613. doi: 10.1007/s00787-020-01697-zCrossRefGoogle ScholarPubMed
Goltermann, J., Winter, N. R., Meinert, S., Sindermann, L., Lemke, H., Leehr, E. J., … Hahn, T. (2022). Resting-state functional connectivity patterns associated with childhood maltreatment in a large bicentric cohort of adults with and without major depression. Psychological Medicine, 112. doi: 10.1017/S0033291722001623CrossRefGoogle Scholar
Grabe, H. J., Wittfeld, K., Van der Auwera, S., Janowitz, D., Hegenscheid, K., Habes, M., … Hosten, N. (2016). Effect of the interaction between childhood abuse and rs1360780 of the FKBP5 gene on gray matter volume in a general population sample. Human Brain Mapping, 37(4), 16021613. doi: 10.1002/hbm.23123CrossRefGoogle Scholar
Guo, W., Liu, J., Liu, B., Wang, M., Dong, Q., Lu, X., … Li, L. (2022). Relationship between childhood maltreatment and cognitive function in medication-free patients with major depressive disorder. European Archives of Psychiatry and Clinical Neuroscience. doi: 10.1007/s00406-022-01458-wCrossRefGoogle ScholarPubMed
Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16(9), 12761282. doi: 10.1093/cercor/bhj069CrossRefGoogle ScholarPubMed
Haidl, T. K., Hedderich, D. M., Rosen, M., Kaiser, N., Seves, M., Lichtenstein, T., … Koutsouleris, N. (2021). The non-specific nature of mental health and structural brain outcomes following childhood trauma. Psychological Medicine, 110. doi: 10.1017/S0033291721002439Google ScholarPubMed
Hakamata, Y., Suzuki, Y., Kobashikawa, H., & Hori, H. (2022). Neurobiology of early life adversity: A systematic review of meta-analyses towards an integrative account of its neurobiological trajectories to mental disorders. Frontiers in Neuroendocrinology, 65, 100994. doi: 10.1016/j.yfrne.2022.100994CrossRefGoogle ScholarPubMed
Harmelen, A.-L. V., Tol, M.-J. V., Wee, N. J. A. V. D., Veltman, D. J., Aleman, A., Spinhoven, P., … Elzinga, B. M. (2010). Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biological Psychiatry, 68(9), 832838. doi: 10.1016/j.biopsych.2010.06.011CrossRefGoogle ScholarPubMed
Hart, H., Lim, L., Mehta, M. A., Simmons, A., Mirza, K. A. H., & Rubia, K. (2018). Altered fear processing in adolescents with a history of severe childhood maltreatment: An fMRI study. Psychological Medicine, 48(7), 10921101. doi: 10.1017/S0033291716003585CrossRefGoogle ScholarPubMed
Herringa, R. J., Birn, R. M., Ruttle, P. L., Burghy, C. A., Stodola, D. E., Davidson, R. J., & Essex, M. J. (2013). Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 1911919124. doi: 10.1073/pnas.1310766110CrossRefGoogle ScholarPubMed
Herzog, P., Kube, T., & Fassbinder, E. (2022). How childhood maltreatment alters perception and cognition – the predictive processing account of borderline personality disorder. Psychological Medicine, 52(14), 28992916. doi: 10.1017/s0033291722002458CrossRefGoogle ScholarPubMed
Hu, X., Zhang, L., Bu, X., Li, H., Gao, Y., Lu, L., … Gong, Q. (2020). White matter disruption in obsessive-compulsive disorder revealed by meta-analysis of tract-based spatial statistics. Depression and Anxiety, 37(7), 620631. doi: 10.1002/da.23008CrossRefGoogle ScholarPubMed
Huang, X., Zhang, M., Li, B., Shang, H., & Yang, J. (2022). Structural and functional brain abnormalities in idiopathic cervical dystonia: A multimodal meta-analysis. Parkinsonism and Related Disorders, 103, 153165. doi: 10.1016/j.parkreldis.2022.08.029CrossRefGoogle ScholarPubMed
Hughes, K., Bellis, M. A., Hardcastle, K. A., Sethi, D., Butchart, A., Mikton, C., … Dunne, M. P. (2017). The effect of multiple adverse childhood experiences on health: A systematic review and meta-analysis. The Lancet Public Health, 2(8), e356e366. doi: 10.1016/s2468-2667(17)30118-4CrossRefGoogle Scholar
Jaworska, N., MacMaster, F. P., Gaxiola, I., Cortese, F., Goodyear, B., & Ramasubbu, R. (2014). A preliminary study of the influence of age of onset and childhood trauma on cortical thickness in major depressive disorder. BioMed Research International, 2014, 410472. doi: 10.1155/2014/410472CrossRefGoogle ScholarPubMed
Kelly, P. A., Viding, E., Puetz, V. B., Palmer, A. L., Mechelli, A., Pingault, J.-B., … McCrory, E. J. (2015). Sex differences in socioemotional functioning, attentional bias, and gray matter volume in maltreated children: A multilevel investigation. Development and Psychopathology, 27(4 Pt 2), 15911609. doi: 10.1017/S0954579415000966CrossRefGoogle ScholarPubMed
Kelly, P. A., Viding, E., Puetz, V. B., Palmer, A. L., Samuel, S., & McCrory, E. J. (2016). The sexually dimorphic impact of maltreatment on cortical thickness, surface area and gyrification. Journal of Neural Transmission, 123(9), 10691083. doi: 10.1007/s00702-016-1523-8CrossRefGoogle ScholarPubMed
Kelly, P. A., Viding, E., Wallace, G. L., Schaer, M., Brito, S. A. D., Robustelli, B., & McCrory, E. J. (2013). Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: Neural markers of vulnerability? Biological Psychiatry, 74(11), 845852. doi: 10.1016/j.biopsych.2013.06.020CrossRefGoogle ScholarPubMed
Kennerley, S. W., Sakai, K., & Rushworth, M. F. S. (2004). Organization of action sequences and the role of the pre-SMA. Journal of Neurophysiology, 91(2), 978993. doi: 10.1152/jn.00651.2003CrossRefGoogle ScholarPubMed
Kuhn, M., Scharfenort, R., Schumann, D., Schiele, M. A., Munsterkotter, A. L., Deckert, J., … Lonsdorf, T. B. (2016). Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament. Social Cognitive and Affective Neuroscience, 11(4), 537547. doi: 10.1093/scan/nsv137CrossRefGoogle ScholarPubMed
Labudda, K., Kreisel, S., Beblo, T., Mertens, M., Kurlandchikov, O., Bien, C. G., … Woermann, F. G. (2013). Mesiotemporal volume loss associated with disorder severity: A VBM study in borderline personality disorder. PLoS One, 8(12), e83677. doi: 10.1371/journal.pone.0083677CrossRefGoogle ScholarPubMed
Li, L., Zhang, Y., Zhao, Y., Li, Z., Kemp, G. J., Wu, M., & Gong, Q. (2022). Cortical thickness abnormalities in patients with post-traumatic stress disorder: A vertex-based meta-analysis. Neuroscience and Biobehavioral Reviews, 134, 104519. doi: 10.1016/j.neubiorev.2021.104519CrossRefGoogle ScholarPubMed
Li, Q., Zhao, Y., Chen, Z., Long, J., Dai, J., Huang, X., … Gong, Q. (2020). Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder. Neuropsychopharmacology, 45(4), 703712. doi: 10.1038/s41386-019-0563-9CrossRefGoogle ScholarPubMed
Liao, M., Yang, F., Zhang, Y., He, Z., Song, M., Jiang, T., … Li, L. (2013). Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS One, 8(8), e71898. doi: 10.1371/journal.pone.0071898CrossRefGoogle ScholarPubMed
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., … Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ, 339, b2700. doi: 10.1136/bmj.b2700CrossRefGoogle ScholarPubMed
Lim, L., Hart, H., Mehta, M., Simmons, A., Mirza, K., & Rubia, K. (2016). Neurofunctional abnormalities during sustained attention in severe childhood abuse. PLoS One, 11(11), e0165547. doi: 10.1371/journal.pone.0165547CrossRefGoogle ScholarPubMed
Lim, L., Hart, H., Mehta, M., Worker, A., Simmons, A., Mirza, K., & Rubia, K. (2018). Grey matter volume and thickness abnormalities in young people with a history of childhood abuse. Psychological Medicine, 48(6), 10341046. doi: 10.1017/S0033291717002392CrossRefGoogle ScholarPubMed
Lim, L., Hart, H., Mehta, M. A., Simmons, A., Mirza, K., & Rubia, K. (2015). Neural correlates of error processing in young people with a history of severe childhood abuse: An fMRI study. American Journal of Psychiatry, 172(9), 892900. doi: 10.1176/appi.ajp.2015.14081042CrossRefGoogle ScholarPubMed
Lim, L., Howells, H., Radua, J., & Rubia, K. (2020). Aberrant structural connectivity in childhood maltreatment: A meta-analysis. Neuroscience and Biobehavioral Reviews, 116, 406414. doi: 10.1016/j.neubiorev.2020.07.004CrossRefGoogle ScholarPubMed
Lim, L., & Khor, C. C. (2022). Examining the common and specific grey matter abnormalities in childhood maltreatment and peer victimisation. BJPsych Open, 8(4), e132. doi: 10.1192/bjo.2022.531CrossRefGoogle ScholarPubMed
Lim, L., Radua, J., & Rubia, K. (2014). Gray matter abnormalities in childhood maltreatment: A voxel-wise meta-analysis. American Journal of Psychiatry, 171(8), 854863. doi: 10.1176/appi.ajp.2014.13101427CrossRefGoogle ScholarPubMed
Lu, S., Gao, W., Wei, Z., Wu, W., Liao, M., Ding, Y., … Li, L. (2013). Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma. PLoS One, 8(7), e69350. doi: 10.1371/journal.pone.0069350CrossRefGoogle ScholarPubMed
Lu, S., Xu, R., Cao, J., Yin, Y., Gao, W., Wang, D., … Xu, Y. (2019). The left dorsolateral prefrontal cortex volume is reduced in adults reporting childhood trauma independent of depression diagnosis. Journal of Psychiatric Research, 112, 1217. doi: 10.1016/j.jpsychires.2019.02.014CrossRefGoogle ScholarPubMed
Lu, X.-W., Guo, H., Sun, J. R., Dong, Q. L., Zhao, F. T., Liao, X. H., … Li, L. J. (2018). A shared effect of paroxetine treatment on gray matter volume in depressive patients with and without childhood maltreatment: A voxel-based morphometry study. CNS Neuroscience & Therapeutics, 24(11), 10731083. doi: 10.1111/cns.13055CrossRefGoogle ScholarPubMed
Luo, Q., Zhang, L., Huang, C. C., Zheng, Y., Kanen, J. W., Zhao, Q., … Consortium, I. (2020). Association between childhood trauma and risk for obesity: A putative neurocognitive developmental pathway. BMC Medicine, 18(1), 278. doi: 10.1186/s12916-020-01743-2CrossRefGoogle ScholarPubMed
Ma, M., Zhang, X., Zhang, Y., Su, Y., Yan, H., Tan, H., … Yue, W. (2021). Childhood maltreatment was correlated with the decreased cortical function in depressed patients under social stress in a working memory task: A pilot study. Frontiers in Psychiatry, 12, 671574. doi: 10.3389/fpsyt.2021.671574CrossRefGoogle Scholar
Ma, S., Huang, H., Zhong, Z., Zheng, H., Li, M., Yao, L., … Wang, H. (2022). Effect of acupuncture on brain regions modulation of mild cognitive impairment: A meta-analysis of functional magnetic resonance imaging studies. Frontiers in Aging Neuroscience, 14, 914049. doi: 10.3389/fnagi.2022.914049CrossRefGoogle ScholarPubMed
Maier, A., Gieling, C., Heinen-Ludwig, L., Stefan, V., Schultz, J., Gunturkun, O., … Scheele, D. (2020). Association of childhood maltreatment with interpersonal distance and social touch preferences in adulthood. American Journal of Psychiatry, 177(1), 3746. doi: 10.1176/appi.ajp.2019.19020212CrossRefGoogle ScholarPubMed
Mayka, M. A., Corcos, D. M., Leurgans, S. E., & Vaillancourt, D. E. (2006). Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: A meta-analysis. NeuroImage, 31(4), 14531474. doi: 10.1016/j.neuroimage.2006.02.004CrossRefGoogle ScholarPubMed
Mielke, E. L., Neukel, C., Bertsch, K., Reck, C., Mohler, E., & Herpertz, S. C. (2016). Maternal sensitivity and the empathic brain: Influences of early life maltreatment. Journal of Psychiatric Research, 77, 5966. doi: 10.1016/j.jpsychires.2016.02.013CrossRefGoogle ScholarPubMed
Mielke, E. L., Neukel, C., Bertsch, K., Reck, C., Mohler, E., & Herpertz, S. C. (2018). Alterations of brain volumes in women with early life maltreatment and their associations with oxytocin. Hormones and Behavior, 97, 128136. doi: 10.1016/j.yhbeh.2017.11.005CrossRefGoogle ScholarPubMed
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009a). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097.CrossRefGoogle ScholarPubMed
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009b). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62(10), 10061012. doi: 10.1016/j.jclinepi.2009.06.005CrossRefGoogle ScholarPubMed
Muller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., … Eickhoff, S. B. (2018). Ten simple rules for neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 84, 151161. doi: 10.1016/j.neubiorev.2017.11.012CrossRefGoogle ScholarPubMed
Nagy, S. A., Kurtos, Z., Nemeth, N., Perlaki, G., Csernela, E., Lakner, F. E., … Simon, M. (2021). Childhood maltreatment results in altered deactivation of reward processing circuits in depressed patients: A functional magnetic resonance imaging study of a facial emotion recognition task. Neurobiology of Stress, 15, 100399. doi: 10.1016/j.ynstr.2021.100399CrossRefGoogle ScholarPubMed
Olsavsky, A. K., Stoddard, J., Erhart, A., Tribble, R., & Kim, P. (2021). Reported maternal childhood maltreatment experiences, amygdala activation and functional connectivity to infant cry. Social Cognitive and Affective Neuroscience, 16(4), 418427. doi: 10.1093/scan/nsab005CrossRefGoogle ScholarPubMed
Opel, N., Redlich, R., Repple, J., Kaehler, C., Grotegerd, D., Dohm, K., … Dannlowski, U. (2019). Childhood maltreatment moderates the influence of genetic load for obesity on reward related brain structure and function in major depression. Psychoneuroendocrinology, 100, 1826. doi: 10.1016/j.psyneuen.2018.09.027CrossRefGoogle ScholarPubMed
Opel, N., Zwanzger, P., Redlich, R., Grotegerd, D., Dohm, K., Arolt, V., … Dannlowski, U. (2016). Differing brain structural correlates of familial and environmental risk for major depressive disorder revealed by a combined VBM/pattern recognition approach. Psychological Medicine, 46(2), 277290. doi: 10.1017/S0033291715001683CrossRefGoogle ScholarPubMed
Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., … Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11), 27282735. doi: 10.1093/cercor/bhp026CrossRefGoogle ScholarPubMed
Paquola, C., Bennett, M. R., & Lagopoulos, J. (2016). Understanding heterogeneity in grey matter research of adults with childhood maltreatment: A meta-analysis and review. Neuroscience and Biobehavioral Reviews, 69, 299312. doi: 10.1016/j.neubiorev.2016.08.011CrossRefGoogle ScholarPubMed
Penninck, L., Ibrahim, E. C., Artiges, E., Gorgievski, V., Desrivieres, S., Farley, S., … Consortium, I. (2021). Immune-related genetic overlap between regional gray matter reductions and psychiatric symptoms in adolescents, and gene-Set validation in a translational model. Frontiers in Systems Neuroscience, 15, 725413. doi: 10.3389/fnsys.2021.725413CrossRefGoogle Scholar
Pollok, T. M., Kaiser, A., Kraaijenvanger, E. J., Monninger, M., Brandeis, D., Banaschewski, T., … Holz, N. E. (2022). Neurostructural traces of early life adversities: A meta-analysis exploring age- and adversity-specific effects. Neuroscience and Biobehavioral Reviews, 135, 104589. doi: 10.1016/j.neubiorev.2022.104589CrossRefGoogle ScholarPubMed
Praag, H. V., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews Neuroscience, 1(3), 191198. doi: 10.1038/35044558CrossRefGoogle ScholarPubMed
Qiu, Z., & Wang, J. (2021). Altered neural activities during response inhibition in adults with addiction: A voxel-wise meta-analysis. Psychological Medicine, 51(3), 387399. doi: 10.1017/S0033291721000362CrossRefGoogle ScholarPubMed
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry, 195(5), 393402. doi: 10.1192/bjp.bp.108.055046CrossRefGoogle ScholarPubMed
Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., & Surguladze, S. (2012). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27(8), 605611. doi: 10.1016/j.eurpsy.2011.04.001CrossRefGoogle ScholarPubMed
Radua, J., Rubia, K., Canales-Rodríguez, E. J., Pomarol-Clotet, E., Fusar-Poli, P., & Mataix-Cols, D. (2014). Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Frontiers in Psychiatry, 5, 13. doi: 10.3389/fpsyt.2014.00013CrossRefGoogle ScholarPubMed
Recchia, F., Bernal, J. D. K., Fong, D. Y., Wong, S. H. S., Chung, P. K., Chan, D. K. C., … Siu, P. M. (2023). Physical activity interventions to alleviate depressive symptoms in children and adolescents: A systematic review and meta-analysis. JAMA Pediatrics, 177(2), 132140. doi: 10.1001/jamapediatrics.2022.5090.CrossRefGoogle ScholarPubMed
Rinne-Albers, M. A., Boateng, C. P., van der Werff, S. J., Lamers-Winkelman, F., Rombouts, S. A., Vermeiren, R. R., & van der Wee, N. J. (2020). Preserved cortical thickness, surface area and volume in adolescents with PTSD after childhood sexual abuse. Scientific Reports, 10(1), 3266. doi: 10.1038/s41598-020-60256-3CrossRefGoogle ScholarPubMed
Rinne-Albers, M. A., Pannekoek, J. N., van Hoof, M. J., van Lang, N. D., Lamers-Winkelman, F., Rombouts, S. A., … Vermeiren, R. R. (2017). Anterior cingulate cortex grey matter volume abnormalities in adolescents with PTSD after childhood sexual abuse. European Neuropsychopharmacology, 27(11), 11631171. doi: 10.1016/j.euroneuro.2017.08.432CrossRefGoogle ScholarPubMed
Ross, M. C., Sartin-Tarm, A. S., Letkiewicz, A. M., Crombie, K. M., & Cisler, J. M. (2021). Distinct cortical thickness correlates of early life trauma exposure and posttraumatic stress disorder are shared among adolescent and adult females with interpersonal violence exposure. Neuropsychopharmacology, 46(4), 741749. doi: 10.1038/s41386-020-00918-yCrossRefGoogle ScholarPubMed
Sheffield, J. M., Williams, L. E., Woodward, N. D., & Heckers, S. (2013). Reduced gray matter volume in psychotic disorder patients with a history of childhood sexual abuse. Schizophrenia Research, 143(1), 185191. doi: 10.1016/j.schres.2012.10.032CrossRefGoogle ScholarPubMed
Shen, L., Zhang, J., Fan, S., Ping, L., Yu, H., Xu, F., … Zhou, C. (2022). Cortical thickness abnormalities in autism spectrum disorder. European Child & Adolescent Psychiatry. doi: 10.1007/s00787-022-02133-0CrossRefGoogle ScholarPubMed
Sideli, L., Murray, R. M., Schimmenti, A., Corso, M., La Barbera, D., Trotta, A., & Fisher, H. L. (2020). Childhood adversity and psychosis: A systematic review of bio-psycho-social mediators and moderators. Psychological Medicine, 50(11), 17611782. doi: 10.1017/S0033291720002172CrossRefGoogle ScholarPubMed
Spivey, J. M., Shumake, J., Colorado, R. A., Conejo-Jimenez, N., Gonzalez-Pardo, H., & Gonzalez-Lima, F. (2009). Adolescent female rats are more resistant than males to the effects of early stress on prefrontal cortex and impulsive behavior. Developmental Psychobiology, 51(3), 277288. doi: 10.1002/dev.20362CrossRefGoogle Scholar
Tang, S., Wang, Y., Liu, Y., Chau, S. W., Chan, J. W., Chu, W. C., … Wing, Y. K. (2022). Large-scale network dysfunction in alpha-Synucleinopathy: A meta-analysis of resting-state functional connectivity. EBioMedicine, 77, 103915. doi: 10.1016/j.ebiom.2022.103915CrossRefGoogle ScholarPubMed
Teicher, M. H., Samson, J. A., Anderson, C. M., & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function and connectivity. Nature Reviews Neuroscience, 17(10), 652666. doi: 10.1038/nrn.2016.111CrossRefGoogle ScholarPubMed
Thomaes, K., Dorrepaal, E., Draijer, N., Ruiter, M. B. D., Balkom, A. J. V., Smit, J. H., & Veltman, D. J. (2010). Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. The Journal of Clinical Psychiatry, 71(12), 16361644. doi: 10.4088/JCP.08m04754bluCrossRefGoogle ScholarPubMed
Tian, F., Diao, W., Yang, X., Wang, X., Roberts, N., Feng, C., & Jia, Z. (2020). Failure of activation of striatum during the performance of executive function tasks in adult patients with bipolar disorder. Psychological Medicine, 50(4), 653665. doi: 10.1017/S0033291719000473CrossRefGoogle ScholarPubMed
Tomoda, A., Navalta, C. P., Polcari, A., Sadato, N., & Teicher, M. H. (2009a). Childhood sexual abuse is associated with reduced gray matter volume in visual cortex of young women. Biological Psychiatry, 66(7), 642648. doi: 10.1016/j.biopsych.2009.04.021CrossRefGoogle ScholarPubMed
Tomoda, A., Polcari, A., Anderson, C. M., & Teicher, M. H. (2012). Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood. PLoS One, 7(12), e52528. doi: 10.1371/journal.pone.0052528CrossRefGoogle ScholarPubMed
Tomoda, A., Sheu, Y.-S., Rabi, K., Suzuki, H., Navalta, C. P., Polcari, A., & Teicher, M. H. (2011). Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. NeuroImage, 54(Suppl 1), S280S286. doi: 10.1016/j.neuroimage.2010.05.027CrossRefGoogle ScholarPubMed
Tomoda, A., Suzuki, H., Rabi, K., Sheu, Y.-S., Polcari, A., & Teicher, M. H. (2009b). Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment. NeuroImage, 47(Suppl 2), T66T71. doi: 10.1016/j.neuroimage.2009.03.005CrossRefGoogle ScholarPubMed
Tyborowska, A., Volman, I., Niermann, H. C. M., Pouwels, J. L., Smeekens, S., Cillessen, A. H. N., … Roelofs, K. (2018). Early-life and pubertal stress differentially modulate grey matter development in human adolescents. Scientific Reports, 8(1), 9201. doi: 10.1038/s41598-018-27439-5CrossRefGoogle ScholarPubMed
Walsh, N. D., Dalgleish, T., Lombardo, M. V., Dunn, V. J., Harmelen, A.-L. V., Ban, M., & Goodyer, I. M. (2014). General and specific effects of early-life psychosocial adversities on adolescent grey matter volume. NeuroImage: Clinical, 4, 308318. doi: 10.1016/j.nicl.2014.01.001CrossRefGoogle ScholarPubMed
Wang, W., Kang, L., Zhang, N., Guo, X., Wang, P., Zong, X., … Liu, Z. (2021). The interaction effects of suicidal ideation and childhood abuse on brain structure and function in major depressive disorder patients. Neural Plasticity, 2021, 7088856. doi: 10.1155/2021/7088856CrossRefGoogle ScholarPubMed
Wang, X., Luo, Q., Tian, F., Cheng, B., Qiu, L., Wang, S., … Jia, Z. (2019). Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: A voxel-based meta-analysis. Journal of Psychiatry and Neuroscience, 44(2), 89101. doi: 10.1503/jpn.180002CrossRefGoogle ScholarPubMed
Waters, R. C., & Gould, E. (2022). Early life adversity and neuropsychiatric disease: Differential outcomes and translational relevance of rodent models. Frontiers in Systems Neuroscience, 16, 860847. doi: 10.3389/fnsys.2022.860847CrossRefGoogle ScholarPubMed
Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., … Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 11351146. doi: 10.1016/j.neuroimage.2009.12.028CrossRefGoogle ScholarPubMed
Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910. doi: 10.1371/journal.pone.0068910CrossRefGoogle ScholarPubMed
Yang, S., Cheng, Y., Mo, Y., Bai, Y., Shen, Z., Liu, F., … Xu, X. (2017). Childhood maltreatment is associated with gray matter volume abnormalities in patients with first-episode depression. Psychiatry Research: Neuroimaging, 268, 2734. doi: 10.1016/j.pscychresns.2017.07.005CrossRefGoogle ScholarPubMed
Zhao, Y., Zhang, Q., Shah, C., Li, Q., Sweeney, J. A., Li, F., & Gong, Q. (2022). Cortical thickness abnormalities at different stages of the illness course in schizophrenia: A systematic review and meta-analysis. JAMA Psychiatry, 79(6), 560570. doi: 10.1001/jamapsychiatry.2022.0799CrossRefGoogle ScholarPubMed
Zhu, Z., Zhao, Y., Wen, K., Li, Q., Pan, N., Fu, S., … Gong, Q. (2022). Cortical thickness abnormalities in patients with bipolar disorder: A systematic review and meta-analysis. Journal of Affective Disorders, 300, 209218. doi: 10.1016/j.jad.2021.12.080CrossRefGoogle ScholarPubMed
Supplementary material: File

Yang et al. supplementary material

Tables S1-S3 and Figure S1

Download Yang et al. supplementary material(File)
File 338.4 KB