Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T13:53:21.450Z Has data issue: false hasContentIssue false

A randomized trial shows dose-frequency and genotype may determine the therapeutic efficacy of intranasal oxytocin

Published online by Cambridge University Press:  04 December 2020

Juan Kou
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
Yingying Zhang
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
Feng Zhou
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
Cornelia Sindermann
Affiliation:
Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
Christian Montag
Affiliation:
Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
Benjamin Becker
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
Keith M Kendrick*
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
*
Author for correspondence: Keith M. Kendrick, E-mail: kkendrick@uestc.edu.cn

Abstract

Background

The neuropeptide oxytocin is proposed as a promising therapy for social dysfunction by modulating amygdala-mediated social-emotional behavior. Although clinical trials report some benefits of chronic treatment, it is unclear whether efficacy may be influenced by dose frequency or genotype.

Methods

In a randomized, double-blind, placebo-controlled pharmaco-functional magnetic resonance imaging trial (150 male subjects), we investigated acute and different chronic (every day or on alternate days for 5 days) intranasal oxytocin (24 international units) effects and oxytocin receptor genotype-mediated treatment sensitivity on amygdala responses to face emotions. We also investigated similar effects on resting-state functional connectivity between the amygdala and prefrontal cortex.

Results

A single dose of oxytocin-reduced amygdala responses to all face emotions but for threatening (fear and anger) and happy faces, this effect was abolished after daily doses for 5 days but maintained by doses given every other day. The latter dose regime also enhanced associated anxious-arousal attenuation for fear faces. Oxytocin effects on reducing amygdala responses to face emotions only occurred in AA homozygotes of rs53576 and A carriers of rs2254298. The effects of oxytocin on resting-state functional connectivity were not influenced by either dose-frequency or receptor genotype.

Conclusions

Infrequent chronic oxytocin administration may be therapeutically most efficient and its anxiolytic neural and behavioral actions are highly genotype-dependent in males.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95113.CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839851.CrossRefGoogle ScholarPubMed
Bales, K. L., Perkeybile, A. M., Conley, O. G., Lee, M. H., Guoynes, C. D., Downing, GM, … Mendoza, S. P. (2013). Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biological Psychiatry, 74(3), 180188.CrossRefGoogle ScholarPubMed
Benner, S., Aoki, Y., Watanabe, T., Endo, N., Abe, O., Kuroda, M, … Kasai, K. (2018). Neurochemical evidence for differential effects of acute and repeated oxytocin administration. Molecular Psychiatry, 111. doi: 10.1038/s41380-018-0249-4.Google ScholarPubMed
Brüne, M. (2012). Does the oxytocin receptor polymorphism (rs2254298) confer ‘vulnerability’ for psychopathology or ‘differential susceptibility’? Insights from evolution. BMC Medicine, 10(1), 38.CrossRefGoogle ScholarPubMed
Butovskaya, P. R., Lazebny, O. E., Sukhodolskaya, E. M., Vasiliev, V. A., Dronova, D. A., Fedenok, J. N., … Butovskaya, M. L. (2016). Polymorphisms of two loci at the oxytocin receptor gene in populations of Africa, Asia and South Europe. BMC Genetics, 17(1), 17.CrossRefGoogle ScholarPubMed
Cataldo, I., Azhari, A., & Esposito, G. (2018). A review of oxytocin and arginine-vasopressin receptors and their modulation of autism spectrum disorder. Frontiers in Molecular Neuroscience, 11, 27.CrossRefGoogle ScholarPubMed
Chen, F. S., Kumsta, R., Dvorak, F., Domes, G., Yim, O. S., Ebstein, R. P., & Heinrichs, M. (2015). Genetic modulation of oxytocin sensitivity: a pharmacogenetic approach. Translational Psychiatry, 5(10), e664e664.CrossRefGoogle ScholarPubMed
Cremers, H. R., Wager, T. D., & Yarkoni, T. (2017). The relation between statistical power and inference in fMRI. PLoS One, 12(11), e0184923.CrossRefGoogle ScholarPubMed
Domes, G., Heinrichs, M., Gläscher, J., Büchel, C., Braus, D. F., & Herpertz, S. C. (2007). Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biological Psychiatry, 62(10), 11871190.CrossRefGoogle ScholarPubMed
Du, P., He, Z., Cai, Z., Hao, X., Dong, N., Yuan, W., … Tai, F. (2017). Chronic central oxytocin infusion impairs sociability in mandarin voles. Pharmacology Biochemistry and Behavior, 161, 3846.CrossRefGoogle ScholarPubMed
Eckstein, M., Becker, B., Scheele, D., Scholz, C., Preckel, K., Schlaepfer, T. E., … Hurlemann, R. (2015). Oxytocin facilitates the extinction of conditioned fear in humans. Biological Psychiatry, 78(3), 194202.CrossRefGoogle ScholarPubMed
Eckstein, M., Markett, S., Kendrick, K. M., Ditzen, B., Liu, F., Hurlemann, R., & Becker, B. (2017). Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: inverse correlation with depressive traits. Neuroimage, 149, 458467.CrossRefGoogle ScholarPubMed
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., … Fox, P. T. (2016). The human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 35083526.CrossRefGoogle ScholarPubMed
Feng, C., Lori, A., Waldman, I. D., Binder, E. B., Haroon, E., & Rilling, J. K. (2015). A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans. Genes, Brain and Behavior, 14(7), 516525.CrossRefGoogle ScholarPubMed
Fischer, H., Wright, C. I., Whalen, P. J., McInerney, S. C., Shine, L. M., & Rauch, S. L. (2003). Brain habituation during repeated exposure to fearful and neutral faces. Brain Research Bulletin, 59(5), 387392.CrossRefGoogle ScholarPubMed
Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4), 189210.CrossRefGoogle Scholar
Gao, S., Becker, B., Luo, L., Geng, Y., Zhao, W., Yin, Y., … Kendrick, K. M. (2016). Oxytocin, the peptide that bonds the sexes also divides them. Proceedings of the National Academy of Sciences, 113(27), 76507654.CrossRefGoogle Scholar
Guastella, A. J., Gray, K. M., Rinehart, N. J., Alvares, G. A., Tonge, B. J., Hickie, I. B., … Einfeld, S. L. (2015). The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. Journal of Child Psychology and Psychiatry, 56(4), 444452.CrossRefGoogle ScholarPubMed
Guastella, A. J., Hickie, I. B., McGuinness, M. M., Otis, M., Woods, E. A., Disinger, H. M., … Banati, R. B. (2013). Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research. Psychoneuroendocrinology, 38(5), 612625.CrossRefGoogle ScholarPubMed
Guidi, J., Brakemeier, E. L., Bockting, C. L., Cosci, F., Cuijpers, P., Jarrett, R. B., … Rief, W. (2018). Methodological recommendations for trials of psychological interventions. Psychotherapy and Psychosomatics, 87(5), 276284.CrossRefGoogle ScholarPubMed
Halverson, T., Jarskog, L. F., Pedersen, C., & Penn, D. (2019). Effects of oxytocin on empathy, introspective accuracy, and social symptoms in schizophrenia: a 12-week twice-daily randomized controlled trial. Schizophrenia Research, 204, 178182.CrossRefGoogle ScholarPubMed
Hennessey, T., Andari, E., & Rainnie, D. G. (2018). RDoC-based categorization of amygdala functions and its implications in autism. Neuroscience & Biobehavioral Reviews, 90, 115129.CrossRefGoogle ScholarPubMed
Huang, H., Michetti, C., Busnelli, M., Manago, F., Sannino, S., Scheggia, D., … Scattoni, M. L. (2014). Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology, 39(5), 11021114.CrossRefGoogle ScholarPubMed
Jarskog, L. F., Pedersen, C. A., Johnson, J. L., Hamer, R. M., Rau, S. W., Elliott, T., & Penn, D. L. (2017). A 12-week randomized controlled trial of twice-daily intranasal oxytocin for social cognitive deficits in people with schizophrenia. Schizophrenia Research, 185, 8895.CrossRefGoogle ScholarPubMed
Jurek, B., & Neumann, I. D. (2018). The oxytocin receptor: from intracellular signaling to behavior. Physiological Reviews, 98(3), 18051908.CrossRefGoogle Scholar
Kendrick, K. M., Guastella, A. J., & Becker, B. (2017). Overview of human oxytocin research. In Hurlemann, R. & Grinevich, V. (Eds.), Behavioral Pharmacology of Neuropeptides: Oxytocin (pp. 321348). Cham: Springer.CrossRefGoogle Scholar
Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., … Meyer-Lindenberg, A. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25(49), 1148911493.CrossRefGoogle ScholarPubMed
Koch, S. B. J., van Zuiden, M., Nawijn, L., Frijling, J. L., & Veltman, D. J. (2016). Intranasal oxytocin administration dampens amygdala reactivity towards emotional faces in male and female PTSD patients. Neuropsychopharmacology, 41, 14951504.CrossRefGoogle ScholarPubMed
Lee, M. R., Scheidweiler, K. B., Diao, X. X., Akhlaghi, F., Cummins, A., Huestis, M. A., … Averbeck, B. B. (2018). Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: determination using a novel oxytocin assay. Molecular Psychiatry, 23(1), 115122.CrossRefGoogle ScholarPubMed
Lieberz, J., Scheele, D., Spengler, F. B., Matheisen, T., Schneider, L., Stoffel-Wagner, B., … Hurlemann, R. (2019). Kinetics of oxytocin effects on amygdala and striatal reactivity vary between women and men. Neuropsychopharmacology, 45 (7), 11341140.CrossRefGoogle ScholarPubMed
Lohse, M. J., & Hofmann, K. P. (2015). Spatial and temporal aspects of signaling by G-protein–coupled receptors. Molecular Pharmacology, 88(3), 572578.CrossRefGoogle ScholarPubMed
Luo, L., Becker, B., Geng, Y., Zhao, Z., Gao, S., Zhao, W., … Hu, J. (2017). Sex-dependent neural effect of oxytocin during subliminal processing of negative emotion faces. Neuroimage, 162, 127137.CrossRefGoogle ScholarPubMed
Martins, D. A., Mazibuko, N., Zelaya, F., Vasilakopoulou, S., Loveridge, J., Oates, U., … Paloyelis, Y. (2020). Effects of route of administration on oxytocin-induced changes in regional cerebral blood flow in humans. Nature Communications. doi: 10.1038/s41467-020-14845-5.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524538.CrossRefGoogle ScholarPubMed
Montag, C., Sindermann, C., Melchers, M., Jung, S., Luo, R., Becker, B., … Kendrick, K. M. (2017). A functional polymorphism of the OXTR gene is associated with autistic traits in Caucasian and Asian populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 174(8), 808816.CrossRefGoogle ScholarPubMed
Neumann, I. D., & Slattery, D. A. (2016). Oxytocin in general anxiety and social fear: a translational approach. Biological Psychiatry, 79(3), 213221.CrossRefGoogle ScholarPubMed
Paloyelis, Y., Doyle, O. M., Zelaya, F. O., Maltezos, S., Williams, S. C., Fotopoulou, A., & Howard, M. A. (2016). A spatiotemporal profile of in vivo cerebral blood flow changes following intranasal oxytocin in humans. Biological Psychiatry, 79(8), 693705.CrossRefGoogle ScholarPubMed
Parker, K. J., Garner, J. P., Libove, R. A., Hyde, S. A., Hornbeak, K. B., Carson, D. S., … Hardan, A. Y. (2014). Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proceedings of the National Academy of Sciences, 111(33), 1225812263.CrossRefGoogle ScholarPubMed
Pierce, K. L., Premont, R. T., & Lefkowitz, R. J. (2002). Seven-transmembrane receptors. Nature Reviews Molecular Cell Biology, 3(9), 639650.CrossRefGoogle ScholarPubMed
Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., … Yarkoni, T. (2017). Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2), 115.CrossRefGoogle ScholarPubMed
Quintana, D. S., Rokicki, J., van der Meer, D., Alnæs, D., Kaufmann, T., Córdova-Palomera, A., … Westlye, L. T. (2019). Oxytocin pathway gene networks in the human brain. Nature Communications, 10(1), 112.CrossRefGoogle ScholarPubMed
Quintana, D. S., Westlye, L. T., Alnaes, D., Rustan, Ø. G., Kaufmann, T., Smerud, K. T., … Andreassen, O. A. (2016). Low dose intranasal oxytocin delivered with breath powered device dampens anygdala response to emotional stimuli: a peripheral effect-controlled within-subjects randomized dose-response fMRI trial. Psychoneuroendocrinology, 69, 180188.CrossRefGoogle ScholarPubMed
Smith, M. P., Ayad, V. J., Mundell, S. J., McArdle, C. A., Kelly, E., & López Bernal, A. (2006). Internalization and desensitization of the oxytocin receptor is inhibited by dynamin and clathrin mutants in human embryonic kidney 293 cells. Molecular Endocrinology, 20(2), 379388.CrossRefGoogle ScholarPubMed
Spengler, F. B., Schultz, J., Scheele, D., Essel, M., Maier, W., Heinrichs, M., & Hurlemann, R. (2017). Kinetics and dose dependency of intranasal oxytocin effects on amygdala reactivity. Biological Psychiatry, 82(12), 885894.CrossRefGoogle ScholarPubMed
Sripada, C. S., Phan, K. L., Labuschagne, I., Welsh, R., Nathan, P. J., & Wood, A. G. (2013). Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. International Journal of Neuropsychopharmacology, 16(2), 255260.CrossRefGoogle ScholarPubMed
Stoop, R. (2012). Neuromodulation by oxytocin and vasopressin. Neuron, 76(1), 142159.CrossRefGoogle ScholarPubMed
Striepens, N., Kendrick, K. M., Hanking, V., Landgraf, R., Wüllner, U., Maier, W., & Hurlemann, R. (2013). Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Scientific Reports, 3, 3440.CrossRefGoogle ScholarPubMed
Terenzi, M. G., & Ingram, C. D. (2005). Oxytocin-induced excitation of neurones in the rat central and medial amygdaloid nuclei. Neuroscience, 134(1), 345354.CrossRefGoogle ScholarPubMed
Wang, D., Yan, X., Li, M., & Ma, Y. (2017). Neural substrates underlying the effects of oxytocin: a quantitative meta-analysis of pharmaco-imaging studies. Social Cognitive and Affective Neuroscience, 12(10), 15651573.CrossRefGoogle ScholarPubMed
Watanabe, T., Kuroda, M., Kuwabara, H., Aoki, Y., Iwashiro, N., Tatsunobu, N., … Kasai, K. (2015). Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain, 138(11), 34003412.CrossRefGoogle ScholarPubMed
Wright, C. I., Fischer, H., Whalen, P. J., McInerney, S. C., Shin, L. M., & Rauch, S. L. (2001). Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport, 12, 379383.CrossRefGoogle ScholarPubMed
Yamasue, H., Okada, T., Munesue, T., Kuroda, M., Fujioka, T., Uno, Y., … Yoshimura, Y. (2018). Effect of intranasal oxytocin on the core social symptoms of autism spectrum disorder: a randomized clinical trial. Molecular Psychiatry, 110. doi: 10.1038/s41380-018-0097-2.Google ScholarPubMed
Yan, C., & Zang, Y. (2010). DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in systems neuroscience, 4, 13.Google Scholar
Yang, S., Dong, X., Guo, X., Han, Y., Song, H., Gao, L., … Zhang, X. (2017). Serum oxytocin levels and an oxytocin receptor gene polymorphism (rs2254298) indicate social deficits in children and adolescents with autism spectrum disorders. Frontiers in Neuroscience, 11, 221.CrossRefGoogle Scholar
Young, L. J., & Barrett, C. E. (2015). Can oxytocin treat autism? Science, 347(6224), 825826.CrossRefGoogle ScholarPubMed
Zhang, Z., & Yuan, K.H. (2018). Practical Statistical Power Analysis Using Webpower and R (pp. 89104). Granger, IN: ISDSA Press.Google Scholar
Zhao, W., Becker, B., Yao, S., Ma, X., Kou, J., & Kendrick, K. M. (2018). Oxytocin enhancement of the placebo effect may be a novel therapy for working memory impairments. Psychotherapy and Psychosomatics, 88(2), 125126.CrossRefGoogle ScholarPubMed
Zhao, Z., Yao, S., Li, K., Sindermann, C., Zhou, F., Zhao, W., … Becker, B. (2019). Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety. Psychotherapy and Psychosomatics, 88(1), 515.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kou et al. supplementary material

Kou et al. supplementary material

Download Kou et al. supplementary material(File)
File 832 KB