Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T20:33:11.600Z Has data issue: false hasContentIssue false

Structural and resting-state connection abnormalities of habenula in obsessive-compulsive disorder

Published online by Cambridge University Press:  22 March 2024

Qian Liu
Affiliation:
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Medical Psychological Institute of Central South University, Changsha, Hunan, China National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
Xiang Wang
Affiliation:
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Medical Psychological Institute of Central South University, Changsha, Hunan, China National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
Yanyuan Cao
Affiliation:
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Medical Psychological Institute of Central South University, Changsha, Hunan, China National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
Feng Gao
Affiliation:
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Medical Psychological Institute of Central South University, Changsha, Hunan, China National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
Jie Xia
Affiliation:
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Medical Psychological Institute of Central South University, Changsha, Hunan, China National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
Hongyu Du
Affiliation:
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Medical Psychological Institute of Central South University, Changsha, Hunan, China National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
Haiyan Liao
Affiliation:
Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
Changlian Tan
Affiliation:
Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
Jie Fan*
Affiliation:
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Medical Psychological Institute of Central South University, Changsha, Hunan, China National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
Xiongzhao Zhu*
Affiliation:
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China Medical Psychological Institute of Central South University, Changsha, Hunan, China National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
*
Corresponding author: Jie Fan; Email: fanjie1025@csu.edu.cn; Xiongzhao Zhu; Email: xiongzhaozhu@csu.edu.cn
Corresponding author: Jie Fan; Email: fanjie1025@csu.edu.cn; Xiongzhao Zhu; Email: xiongzhaozhu@csu.edu.cn

Abstract

Background

Previous studies have suggested that the habenula (Hb) may be involved in the mechanism of obsessive-compulsive disorder (OCD). However, the specific role of Hb in OCD remains unclear. This study aimed to explore the structural and functional abnormalities of Hb in OCD and their relationship with the clinical symptoms.

Methods

Eighty patients with OCD and 85 healthy controls (HCs) were recruited as the primary dataset. The grey matter volume, resting-state functional connectivity (FC), and effective connectivity (EC) of the Hb were calculated and compared between OCD group and HCs. An independent replication dataset was used to verify the stability and robustness of the results.

Results

Patients with OCD exhibited smaller Hb volume and increased FC of right Hb-left hippocampus than HCs. Dynamic causal model revealed an increased EC from left hippocampus to right Hb and a less inhibitory causal influence from the right Hb to left hippocampus in the OCD group compared to HCs. Similar results were found in the replication dataset.

Conclusions

This study suggested that abnormal structure of Hb and hippocampus-Hb connectivity may contribute to the pathological basis of OCD.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors are co-corresponding authors.

References

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th edn). Arlington, VA: American Psychiatric Association.Google Scholar
Baker, P. M., Jhou, T., Li, B., Matsumoto, M., Mizumori, S. J. Y., Stephenson-Jones, M., & Vicentic, A. (2016). The lateral habenula circuitry: Reward processing and cognitive control. Journal of Neuroscience, 36(45), 1148211488. https://doi.org/10.1523/JNEUROSCI.2350-16.2016CrossRefGoogle ScholarPubMed
Baker, P. M., Rao, Y., Rivera, Z. M. G., Garcia, E. M., & Mizumori, S. J. Y. (2019). Selective functional interaction between the lateral habenula and hippocampus during different tests of response flexibility. Frontiers in Molecular Neuroscience, 12, 115. https://doi.org/10.3389/fnmol.2019.00245CrossRefGoogle ScholarPubMed
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561571. https://doi.org/10.1001/archpsyc.1961.01710120031004CrossRefGoogle ScholarPubMed
Boedhoe, P. S. W., Schmaal, L., Abe, Y., Ameis, S. H., Arnold, P. D., Batistuzzo, M. C., … Van Den Heuvel, O. A. (2017). Distinct subcortical volume alterations in pediatric and adult OCD: A worldwide meta- and mega-analysis. American Journal of Psychiatry, 174(1), 6070. https://doi.org/10.1176/appi.ajp.2016.16020201CrossRefGoogle ScholarPubMed
Bokor, G., & Anderson, P.D. (2014). Obsessive–compulsive disorder. Journal of Pharmacy Practice, 27(2), 116130. https://doi.org/10.1177/0897190014521996CrossRefGoogle ScholarPubMed
Carlsson, M. L. (2000). On the role of cortical glutamate in obsessive-compulsive disorder and attention-deficit hyperactivity disorder, two phenomenologically antithetical conditions. Acta Psychiatrica Scandinavica, 102(6), 401413. https://doi.org/10.1034/j.1600-0447.2000.102006401.xCrossRefGoogle ScholarPubMed
Chasson, G. S., Tang, S., Gray, B., Sun, H., & Wang, J. (2013). Further validation of a Chinese version of the obsessive-compulsive inventory-revised. Behavioural and Cognitive Psychotherapy, 41(2), 249254. https://doi.org/10.1017/S1352465812000379CrossRefGoogle ScholarPubMed
Chen, H., Zhang, Y., Zhang, L., Qiao, L., & Shen, D. (2021). Estimating brain functional networks based on adaptively-weighted fMRI signals for MCI identification. Frontiers in Aging Neuroscience, 12, 111. https://doi.org/10.3389/fnagi.2020.595322CrossRefGoogle Scholar
Ely, B. A., Stern, E. R., Kim, J. W., Gabbay, V., & Xu, J. (2019). Detailed mapping of human habenula resting-state functional connectivity. NeuroImage, 200, 621634. https://doi.org/10.1016/j.neuroimage.2019.06.015CrossRefGoogle ScholarPubMed
Ely, B. A., Xu, J., Goodman, W. K., Lapidus, K. A., Gabbay, V., & Stern, E. R. (2016). Resting-state functional connectivity of the human habenula in healthy individuals: Associations with subclinical depression. Human Brain Mapping, 37(7), 23692384. https://doi.org/10.1002/hbm.23179CrossRefGoogle ScholarPubMed
Fakhoury, M. (2017). The habenula in psychiatric disorders: More than three decades of translational investigation. Neuroscience and Biobehavioral Reviews, 83, 721735. https://doi.org/10.1016/j.neubiorev.2017.02.010CrossRefGoogle ScholarPubMed
Friston, K. J., Kahan, J., Biswal, B., & Razi, A. (2014). A DCM for resting state fMRI. NeuroImage, 94, 396407. https://doi.org/10.1016/j.neuroimage.2013.12.009CrossRefGoogle ScholarPubMed
Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., … Charney, D. S. (1989). The Yale-Brown Obsessive Compulsive Scale: I. Development, use, and reliability. Archives of General Psychiatry, 46(11), 10061011. https://doi.org/10.1001/archpsyc.1989.01810110048007CrossRefGoogle ScholarPubMed
Gruner, P., & Pittenger, C. (2017). Cognitive inflexibility in obsessive-compulsive disorder. Neuroscience, 345, 243255. https://doi.org/10.1016/j.neuroscience.2016.07.030CrossRefGoogle ScholarPubMed
Gruner, P., Vo, A., Ikuta, T., Mahon, K., Peters, B. D., Malhotra, A. K., … Szeszko, P. R. (2012). White matter abnormalities in pediatric obsessive-compulsive disorder. Neuropsychopharmacology, 37(12), 27302739. https://doi.org/10.1038/npp.2012.138CrossRefGoogle ScholarPubMed
Henseler, I., Gruber, O., Kraft, S., Krick, C., Reith, W., & Falkai, P. (2008). Compensatory hyperactivations as markers of latent working memory dysfunctions in patients with obsessive-compulsive disorder: An fMRI study. Journal of Psychiatry and Neuroscience, 33(3), 209215, PMID:18592040.Google ScholarPubMed
Hones, V. I., & Mizumori, S. J. Y. (2022). Response flexibility: The role of the lateral habenula. Frontiers in Behavioral Neuroscience, 16, 120. https://doi.org/10.3389/fnbeh.2022.852235CrossRefGoogle ScholarPubMed
Hu, H., Cui, Y., & Yang, Y. (2020). Circuits and functions of the lateral habenula in health and in disease. Nature Reviews Neuroscience, 21(5), 277295. https://doi.org/10.1038/s41583-020-0292-4CrossRefGoogle ScholarPubMed
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825841. https://doi.org/10.1006/nimg.2002.1132CrossRefGoogle ScholarPubMed
Kim, J. W., Naidich, T. P., Ely, B. A., Yacoub, E., De Martino, F., Fowkes, M. E., … Xu, J. (2016). Human habenula segmentation using myelin content. NeuroImage, 130, 145156. https://doi.org/10.1016/j.neuroimage.2016.01.048CrossRefGoogle ScholarPubMed
Knierim, J. J. (2015). The hippocampus. Current Biology, 25(23), R1116R1121. https://doi.org/10.1016/j.cub.2015.10.049CrossRefGoogle ScholarPubMed
Lawson, R. P., Drevets, W. C., & Roiser, J. P. (2013). Defining the habenula in human neuroimaging studies. NeuroImage, 64(1), 722727. https://doi.org/10.1016/j.neuroimage.2012.08.076CrossRefGoogle ScholarPubMed
Li, K., Zhang, H., Wang, B., Yang, Y., Zhang, M., Li, W., … Zhang, H. (2020). Hippocampal functional network: The mediating role between obsession and anxiety in adult patients with obsessive-compulsive disorder. World Journal of Biological Psychiatry, 21(9), 685695. https://doi.org/10.1080/15622975.2020.1733082CrossRefGoogle Scholar
Loonen, A. J. M., & Ivanova, S. A. (2019). Consider role of glutamatergic habenula-projecting globus pallidus in OCD. Pharmacopsychiatry, 52(4), 203204. https://doi.org/10.1055/a-0835-6447Google ScholarPubMed
Mizumori, S. J. Y., & Baker, P. M. (2017). The lateral habenula and adaptive behaviors. Trends in Neurosciences, 40(8), 481493. https://doi.org/10.1016/j.tins.2017.06.001CrossRefGoogle ScholarPubMed
Namboodiri, V. M. K., Rodriguez-Romaguera, J., & Stuber, G. D. (2016). The habenula. Current Biology, 26(19), R873R877. https://doi.org/10.1016/j.cub.2016.08.051CrossRefGoogle ScholarPubMed
Okamoto, H., Agetsuma, M., & Aizawa, H. (2012). Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety. Developmental Neurobiology, 72(3), 386394. https://doi.org/10.1002/dneu.20913CrossRefGoogle ScholarPubMed
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113. https://doi.org/10.1016/0028-3932(71)90067-4CrossRefGoogle ScholarPubMed
Patricia, G., & Christopher, P. (2018). Cognitive inflexibility in obsessive-compulsive disorder. Neuroscience, 176(1), 139148. https://doi.org/10.1016/j.neuroscience.2016.07.030Google Scholar
Penny, W. D., Stephan, K. E., Daunizeau, J., Rosa, M. J., Friston, K. J., Schofield, T. M., & Leff, A. P. (2010). Comparing families of dynamic causal models. PLoS Computational Biology, 6(3), e1000709. https://doi.org/10.1371/journal.pcbi.1000709CrossRefGoogle ScholarPubMed
Pittenger, C., Bloch, M. H., & Williams, K. (2012). Glutamate abnormalities in obsessive compulsive. Pharmacological Therapy, 132(3), 314332. https://doi.org/10.1016/j.pharmthera.2011.09.006CrossRefGoogle Scholar
Rao, S., Raveendranathan, D., Shivakumar, V., Narayanaswamy, J. C., Venkatasubramanian, G., & Reddy, Y. C. J. (2018). Hippocampus volume alterations and the clinical correlates in medication naïve obsessive-compulsive disorder. Journal of Affective Disorders, 236, 15. https://doi.org/10.1016/j.jad.2018.04.048CrossRefGoogle ScholarPubMed
Roy, N., & Parhar, I. (2022). Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neuroscience and Biobehavioral Reviews, 132, 870883. https://doi.org/10.1016/j.neubiorev.2021.11.008CrossRefGoogle ScholarPubMed
Sachella, T. E., Ihidoype, M. R., Proulx, C. D., Pafundo, D. E., Medina, J. H., Mendez, P., & Piriz, J. (2022). A novel role for the lateral habenula in fear learning. Neuropsychopharmacology, 47(6), 12101219. https://doi.org/10.1038/s41386-022-01294-5CrossRefGoogle ScholarPubMed
Shephard, E., Batistuzzo, M. C., Hoexter, M. Q., Stern, E. R., Zuccolo, P. F., Ogawa, C. Y., … Miguel, E. C. (2022). Neurocircuit models of obsessive-compulsive disorder: Limitations and future directions for research. Brazilian Journal of Psychiatry, 44(2), 187200. https://doi.org/10.1590/1516-4446-2020-1709CrossRefGoogle ScholarPubMed
Shephard, E., Stern, E. R., van den Heuvel, O. A., Costa, D. L. C., Batistuzzo, M. C., Godoy, P. B. G., … Miguel, E. C. (2021). Toward a neurocircuit-based taxonomy to guide treatment of obsessive–compulsive disorder. Molecular Psychiatry, 26(9), 45834604. https://doi.org/10.1038/s41380-020-01007-8CrossRefGoogle Scholar
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208S219. https://doi.org/10.1016/j.neuroimage.2004.07.051CrossRefGoogle ScholarPubMed
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Stephenson-Jones, M., Yu, K., Ahrens, S., Tucciarone, J. M., Van Huijstee, A. N., Mejia, L. A., … Li, B. (2016). A basal ganglia circuit for evaluating action outcomes. Nature, 539(7628), 289293. https://doi.org/10.1038/nature19845CrossRefGoogle ScholarPubMed
Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16(6), 317331. https://doi.org/10.1038/nrn3945CrossRefGoogle ScholarPubMed
Ullman, M. T., & Pullman, M. Y. (2015). A compensatory role for declarative memory in neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 51, 205222. https://doi.org/10.1016/j.neubiorev.2015.01.008.ACrossRefGoogle ScholarPubMed
van den Heuvel, O. A., van Wingen, G., Soriano-Mas, C., Alonso, P., Chamberlain, S. R., Nakamae, T., … Veltman, D. J. (2016). Brain circuitry of compulsivity. European Neuropsychopharmacology, 26(5), 810827. https://doi.org/10.1016/j.euroneuro.2015.12.005CrossRefGoogle ScholarPubMed
van Velzen, L. S., Vriend, C., de Wit, S. J., & van den Heuvel, O. A. (2014). Response inhibition and interference control in obsessive-compulsive spectrum disorders. Frontiers in Human Neuroscience, 8, 419. https://doi.org/10.3389/fnhum.2014.00419CrossRefGoogle ScholarPubMed
Weeland, C. J., Kasprzak, S., de Joode, N. T., Abe, Y., Alonso, P., Ameis, S. H., … Vriend, C. (2022). The thalamus and its subnuclei – a gateway to obsessive-compulsive disorder. Translational Psychiatry, 12(1), 70. https://doi.org/10.1038/s41398-022-01823-2CrossRefGoogle ScholarPubMed
Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., … Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage, 76, 183201. https://doi.org/10.1016/j.neuroimage.2013.03.004CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351. https://doi.org/10.1007/s12021-016-9299-4CrossRefGoogle ScholarPubMed
Zhang, C., Zhang, Y., Li, D., Deng, Z., Nuttin, B., Voon, V., & Sun, B. (2020). Habenular stimulation for neurosurgery resistant obsessive-compulsive disorder: A case report. Frontiers in Psychiatry, 11, 29. https://doi.org/10.3389/fpsyt.2020.00029CrossRefGoogle ScholarPubMed
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material
Download Liu et al. supplementary material(File)
File 1.3 MB