Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-x25dq Total loading time: 0.289 Render date: 2022-01-19T05:30:49.814Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The MWA long baseline Epoch of reionisation survey—I. Improved source catalogue for the EoR 0 field

Published online by Cambridge University Press:  29 November 2021

C. R. Lynch*
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Perth, WA 6102, Australia
T. J. Galvin
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia
J. L. B. Line
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Perth, WA 6102, Australia
C. H. Jordan
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Perth, WA 6102, Australia
C. M. Trott
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Perth, WA 6102, Australia
J. K. Chege
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Perth, WA 6102, Australia
B. McKinley
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Perth, WA 6102, Australia
M. Johnston-Hollitt
Affiliation:
Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
S. J. Tingay
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia
*
*Author for correspondence: C. R. Lynch, E-mail: christene.lynch@curtin.edu.au

Abstract

One of the principal systematic constraints on the Epoch of Reionisation (EoR) experiment is the accuracy of the foreground calibration model. Recent results have shown that highly accurate models of extended foreground sources, and including models for sources in both the primary beam and its sidelobes, are necessary for reducing foreground power. To improve the accuracy of the source models for the EoR fields observed by the Murchison Widefield Array (MWA), we conducted the MWA Long Baseline Epoch of Reionisation Survey (LoBES). This survey consists of multi-frequency observations of the main MWA EoR fields and their eight neighbouring fields using the MWA Phase II extended array. We present the results of the first half of this survey centred on the MWA EoR0 observing field (centred at RA (J2000) $0^\mathrm{h}$ , Dec (J2000) $-27^{\circ}$ ). This half of the survey covers an area of 3 069 degrees $^2$ , with an average rms of 2.1 mJy beam–1. The resulting catalogue contains a total of 80 824 sources, with 16 separate spectral measurements between 100 and 230 MHz, and spectral modelling for 78 $\%$ of these sources. Over this region we estimate that the catalogue is 90 $\%$ complete at 32 mJy, and 70 $\%$ complete at 10.5 mJy. The overall normalised source counts are found to be in good agreement with previous low-frequency surveys at similar sensitivities. Testing the performance of the new source models we measure lower residual rms values for peeled sources, particularly for extended sources, in a set of MWA Phase I data. The 2-dimensional power spectrum of these data residuals also show improvement on small angular scales—consistent with the better angular resolution of the LoBES catalogue. It is clear that the LoBES sky models improve upon the current sky model used by the Australian MWA EoR group for the EoR0 field.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., & O’Neil, M. 2015, IEEE TPAMI, 38, 252CrossRefGoogle Scholar
Barry, N., Hazelton, B., Sullivan, I., Morales, M. F., & Pober, J. C. 2016, MNRAS, 461, 3135CrossRefGoogle Scholar
Barry, N., et al. 2019, ApJ, 884, 1 Google Scholar
Beardsley, A. P., et al. 2016, preprint, (arXiv:1608.06281)Google Scholar
Beardsley, A. P., et al. 2019, PASA, 36, e050Google Scholar
Bernardi, G., et al. 2013, >ApJ, 771, 105ApJ,+771,+105>Google Scholar
Bertin, E., Mellier, Y., Radovich, M., Missonnier, G., Didelon, P., & Morin, B. 2002, in Astronomical Society of the Pacific Conference Series, Vol. 281, Astronomical Data Analysis Software and Systems XI, ed. Bohlender, D. A., Durand, D., & Handley, T. H., 228Google Scholar
Blundell, K. M., Rawlings, S., & Willott, C. J. 1999, AJ, 117, 677CrossRefGoogle Scholar
Bowman, J. D., Morales, M. F., & Hewitt, J. N. 2009, >ApJ, 695, 183 ApJ,+695,+183>Google Scholar
Briggs, D. S. 1995, in American Astronomical Society Meeting Abstracts, 112.02Google Scholar
Byrne, R., et al. 2019, >ApJ, 875, 70ApJ,+875,+70>Google Scholar
Callingham, J. R., et al. 2015, ApJ, 809, 168Google Scholar
Callingham, J. R., et al. 2017, ApJ, 836, 174Google Scholar
Carroll, P. A., et al. 2016, MNRAS, 461, 4151Google Scholar
Cheng, C., et al. 2018, ApJ, 868, 26Google Scholar
Condon, J. J. 1997, PASP, 109, 166CrossRefGoogle Scholar
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693CrossRefGoogle Scholar
Datta, A., Bowman, J. D., & Carilli, C. L. 2010, ApJ, 724, 526CrossRefGoogle Scholar
DeBoer, D. R., et al. 2017, PASP, 129, 045001Google Scholar
de Gasperin, F., Intema, H. T., & Frail, D. A. 2018, MNRAS, 474, 5008Google Scholar
Duchesne, S. W., Johnston-Hollitt, M., Zhu, Z., Wayth, R. B., & Line, J. L. B. 2020, PASA, 37, e037Google Scholar
Duffy, P., & Blundell, K. M. 2012, MNRAS, 421, 108CrossRefGoogle Scholar
Eddington, A. S. 1913, MNRAS, 73, 359CrossRefGoogle Scholar
Ewall-Wice, A., Dillon, J. S., Liu, A., & Hewitt, J. 2017, MNRAS, 470, 1849CrossRefGoogle Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306CrossRefGoogle Scholar
Franzen, T. M. O., et al. 2015, MNRAS, 453, 4020Google Scholar
Franzen, T. M. O., et al. 2016, MNRAS, 459, 3314Google Scholar
Franzen, T. M. O., Vernstrom, T., Jackson, C. A., Hurley-Walker, N., Ekers, R. D., Heald, G., Seymour, N., & White, S. V. 2019, PASA, 36, e004CrossRefGoogle Scholar
Furlanetto, S. R., Oh, S. P., & Briggs, F. H. 2006, PhR, 433, 181 CrossRefGoogle Scholar
Galvin, T. J., et al. 2018, MNRAS, 474, 779Google Scholar
Gehlot, B. K., et al. 2019, MNRAS, 488, 4271CrossRefGoogle Scholar
Goodman, J., & Weare, J. 2010, CAMCS, 5, 65CrossRefGoogle Scholar
Hale, C. L., Robotham, A. S. G., Davies, L. J. M., Jarvis, M. J., Driver, S. P., & Heywood, I. 2019, MNRAS, 487, 3971CrossRefGoogle Scholar
Hancock, P. J., Murphy, T., Gaensler, B. M., Hopkins, A., & Curran, J. R. 2012, MNRAS, 422, 1812CrossRefGoogle Scholar
Hancock, P. J., Trott, C. M., & Hurley-Walker, N. 2018, PASA, 35, e011CrossRefGoogle Scholar
Heald, G. H., et al. 2015, A&A, 582, A123Google Scholar
Hopkins, A. M., et al. 2015, PASA, 32, e037Google Scholar
Hurley-Walker, N., & Hancock, P. J. 2018, A&C, 25, 94CrossRefGoogle Scholar
Hurley-Walker, N., et al. 2014, PASA, 31, e045Google Scholar
Hurley-Walker, N., et al. 2017, MNRAS, 464, 1146Google Scholar
Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A, 598, A78CrossRefGoogle Scholar
Intema, H. T., van Weeren, R. J., Röttgering, H. J. A., & Lal, D. V. 2011, A&A, 535, A38Google Scholar
Jacobs, D. C., et al. 2016, ApJ, 825, 114Google Scholar
Jordan, C. H., et al. 2017, MNRAS, 471, 3974Google Scholar
Kass, R. E., & Raftery, A. E. 1995, JASA, 90, 773 CrossRefGoogle Scholar
Kern, N. S., et al. 2020, ApJ, 890, 122Google Scholar
Kintner, P. M., & Seyler, C. E. 1985, SSR, 41, 91CrossRefGoogle Scholar
Kolopanis, M., et al. 2019, ApJ, 883, 133CrossRefGoogle Scholar
Koopmans, L., et al. 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), 1 (eprint arXiv 1505.07568)Google Scholar
Laing, R. A., & Peacock, J. A. 1980, MNRAS, 190, 903Google Scholar
Lane, W. M., Cotton, W. D., Helmboldt, J. F., & Kassim, N. E. 2012, RS, 47, RS0K04Google Scholar
Lenc, E., et al. 2017, PASA, 34, e040Google Scholar
Lenc, E., Murphy, T., Lynch, C. R., Kaplan, D. L., & Zhang, S. N. 2018, MNRAS, 478, 2835CrossRefGoogle Scholar
Li, W., et al. 2019, ApJ, 887, 141CrossRefGoogle Scholar
Line, J. L. B. 2018, PUMA: Low-frequency radio catalog cross-matching (@eprint ascl 1807.022)Google Scholar
Line, J. L. B., Webster, R. L., Pindor, B., Mitchell, D. A., & Trott, C. M. 2017, PASA, 34, e003CrossRefGoogle Scholar
Line, J. L. B., et al. 2020, PASA, 37, e027Google Scholar
Loi, S. T., et al. 2015, RS, 50, 574Google Scholar
Mandal, S., et al. 2021, A&A, 648, A5Google Scholar
Marvil, J., Owen, F., & Eilek, J. 2015, AJ, 149, 32CrossRefGoogle Scholar
Mauch, T., Murphy, T., Buttery, H. J., Curran, J., Hunstead, R. W., Piestrzynski, B., Robertson, J. G., & Sadler, E. M. 2003, >MNRAS, 342, 1117CrossRefMNRAS,+342,+1117>Google Scholar
McGlynn, T., Scollick, K., & White, N. 1998, Symposium - International Astronomical Union, 179, 465CrossRefGoogle Scholar
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, ed. Shaw, R. A., Hill, F., & Bell, D. J., 127Google Scholar
Mertens, F. G., et al. 2020, MNRAS, 493, 1662Google Scholar
Mevius, M., et al. 2016, RS, 51, 927Google Scholar
Mitchell, D. A., Greenhill, L. J., Wayth, R. B., Sault, R. J., Lonsdale, C. J., Cappallo, R. J., Morales, M. F., & Ord, S. M. 2008, IEEE JSTSP, 2, 707 CrossRefGoogle Scholar
Mohan, N., & Rafferty, D. 2015, PyBDSF: Python Blob Detection and Source Finder (eprint ascl 1502.007)Google Scholar
Morales, M. F., & Wyithe, J. S. B. 2010, ARA&A, 48, 127CrossRefGoogle Scholar
Murray, S. G., Trott, C. M., & Jordan, C. H. 2017, ApJ, 845, 7Google Scholar
Nasirudin, A., Murray, S. G., Trott, C. M., Greig, B., Joseph, R. C., & Power, C. 2020, ApJ, 893, 118CrossRefGoogle Scholar
Noordam, J. E. 2004, in Proc. SPIE, Vol. 5489, Ground-based Telescopes, ed. Oschmann, J. M. Jr ., 817, 10.1117/12.544262Google Scholar
Offringa, A. R., & Smirnov, O. 2017, MNRAS, 471, 301Google Scholar
Offringa, A. R., van de Gronde, J. J., & Roerdink, J. B. T. M., 2012, A&A, 539CrossRefGoogle Scholar
Offringa, A. R., et al. 2014, MNRAS, 444, 606Google Scholar
Offringa, A. R., et al. 2015, PASA, 32Google Scholar
Offringa, A. R., et al. 2016, MNRAS, 458, 1057Google Scholar
Parsons, A. R., et al. 2010, AJ, 139, 1468Google Scholar
Patil, A. H., et al. 2016, MNRAS,Google Scholar
Patil, A. H., et al. 2017, ApJ, 838, 65Google Scholar
Pober, J. C., et al. 2016, ApJ, 819, 8Google Scholar
Pritchard, J. R., & Loeb, A. 2012, RPPh, 75, 086901CrossRefGoogle Scholar
Procopio, P., et al. 2017, PASA, 34, e033Google Scholar
Rasmussen, C. E., & Williams, C. K. I. 2006, Gaussian Processes for Machine LearningCrossRefGoogle Scholar
Rich, J. W., de Blok, W. J. G., Cornwell, T. J., Brinks, E., Walter, F., Bagetakos, I., & Kennicutt, R. C. J. 2008, AJ, 136, 2897CrossRefGoogle Scholar
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Society of the Pacific Conference Series, Vol. 77, Astronomical Data Analysis Software and Systems IV, ed. Shaw, R. A., Payne, H. E., & Hayes, J. J. E., 433 eprint arXiv astro-ph/0612759)Google Scholar
Sault, R. J., Staveley-Smith, L., & Brouw, W. N. 1996, A&As, 120, 375CrossRefGoogle Scholar
Skilling, J. 2004, in American Institute of Physics Conference Series, Vol. 735, Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, ed. Fischer, R., Preuss, R., & Toussaint, U. V., 395, 10.1063/1.1835238Google Scholar
Skilling, J. 2006, BA, 1, 833CrossRefGoogle Scholar
Sokolowski, M., et al. 2017, PASA, 34, e062Google Scholar
Speagle, J. S. 2020, MNRAS, 493, 3132CrossRefGoogle Scholar
Sutinjo, A. T., et al. 2015, IEEE TAP, 63, 5433CrossRefGoogle Scholar
Taylor, M. B. 2006, in Astronomical Society of the Pacific Conference Series, Vol. 351, Astronomical Data Analysis Software and Systems XV, ed. Gabriel, C., Arviset, C., Ponz, D., & Enrique, S., 666Google Scholar
Thompson, A. R., Moran, J. M., & Swenson George, W. J. 2001, Interferometry and Synthesis in Radio Astronomy (2nd edn)CrossRefGoogle Scholar
Thyagarajan, N., et al. 2013, ApJ, 776, 6Google Scholar
Thyagarajan, N., et al. 2015a, ApJ, 804, 14 Google Scholar
Thyagarajan, N., et al. 2015b, ApJl, 807, L28Google Scholar
Tingay, S. J., et al. 2013, PASA, 30, 7Google Scholar
Tozzi, P., Madau, P., Meiksin, A., & Rees, M. J. 2000, ApJ, 528, 597Google Scholar
Trott, C. M., & Wayth, R. B. 2016, PASA, 33, e019CrossRefGoogle Scholar
Trott, C. M., & Wayth, R. B. 2017, PASA, 34, e061CrossRefGoogle Scholar
Trott, C. M., Wayth, R. B., & Tingay, S. J. 2012, ApJ, 757, 101Google Scholar
Trott, C. M., et al. 2016, ApJ, 818, 139Google Scholar
Trott, C. M., et al. 2020, MNRAS, 493, 4711Google Scholar
van der Tol, S., Veenboer, B., & Offringa, A. R. 2018, A&A, 616, A27Google Scholar
van Haarlem, M. P., et al. 2013, A&A, 556, A2Google Scholar
Vedantham, H., Udaya Shankar, N., & Subrahmanyan, R. 2012, ApJ, 745, 176CrossRefGoogle Scholar
Wayth, R. B., et al. 2018, PASA, 35, 33Google Scholar
Wilensky, M. J., Morales, M. F., Hazelton, B. J., Barry, N., Byrne, R., & Roy, S. 2019, PASP, 131, 114507Google Scholar
Williams, W. L., Intema, H. T., & Röttgering, H. J. A. 2013, A&A, 549, A55Google Scholar
Williams, W. L., et al. 2016, MNRAS, 460, 2385Google Scholar
Yoshiura, S., et al. 2021, MNRAS, 505, 4775Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The MWA long baseline Epoch of reionisation survey—I. Improved source catalogue for the EoR 0 field
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The MWA long baseline Epoch of reionisation survey—I. Improved source catalogue for the EoR 0 field
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The MWA long baseline Epoch of reionisation survey—I. Improved source catalogue for the EoR 0 field
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *