Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T15:31:21.469Z Has data issue: false hasContentIssue false

The Chemical Composition of α Cen A: Strong Lines and the ABO Theory of Collisional Line Broadening

Published online by Cambridge University Press:  05 March 2013

Marianne T. Doyle*
Affiliation:
Physical Department, University of Queensland, Brisbane QLD 4072, Australia
Bernard J. O'Mara
Affiliation:
Physical Department, University of Queensland, Brisbane QLD 4072, Australia
John E. Ross*
Affiliation:
Physical Department, University of Queensland, Brisbane QLD 4072, Australia
Michael S. Bessell
Affiliation:
Mount Stromlo Observatory, Australian National University, Weston Creek ACT 2611, Australia
*
CCorresponding authors. Email: mtdoyle@physics.uq.edu.au, ross@physics.uq.edu.au
CCorresponding authors. Email: mtdoyle@physics.uq.edu.au, ross@physics.uq.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mean abundances of Mg, Si, Ca, Ti, Cr, and Fe based on both strong and weak lines of α Cen A are determined by matching the observed line profiles with those synthesised from stellar atmospheric models and comparing these results with a similar analysis for the Sun. There is good agreement between the abundances from strong and weak lines.

Strong lines should generally be an excellent indicator of abundance and far easier to measure than the weak lines normally used. Until the development of the Anstee, Barklem, and O'Mara (ABO) theory for collisional line broadening, the uncertainty in the value of the damping constant prevented strong lines being used for abundance determinations other than in close differential analyses.

We found that α Cen A has a mean overabundance of 0.12 ± 0.06 dex compared to solar mean abundances. This result agrees remarkably well with previous studies that did not use strong lines or the ABO theory for collisional line broadening. Our result supports the conclusion that reliable abundances can be derived from strong lines provided this new theory for line broadening is used to calculate the van der Waals damping.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2005

References

Ahrens, T. J. (ed.) 1995, Global Earth Physics: A Handbook of Physical Constants (Washington DC: American Geophysical Union)Google Scholar
Allende Prieto, C., Barklem, P. S., Asplund, M., & Ruiz Cobo, B. 2001, ApJ, 558, 830 Google Scholar
Anstee, S. D., & O'Mara, B. J. 1991, MNRAS, 253, 549 Google Scholar
Anstee, S. D., & O'Mara, B. J. 1995, MNRAS, 276, 859 Google Scholar
Barklem, P. S., Anstee, S. D., & O'Mara, B. J. 1998a, PASA, 15, 336 CrossRefGoogle Scholar
Barklem, P. S., & O'Mara, B. J. 1997, MNRAS, 290, 102 CrossRefGoogle Scholar
Barklem, P. S., O'Mara, B. J., & Ross, J. E. 1998b, MNRAS, 296, 1057 Google Scholar
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231 Google Scholar
Blackwell, D. E., & Shallis, M. J. 1977, MNRAS, 180, 177 Google Scholar
Brueckner, K. A. 1971, ApJ, 169, 621 Google Scholar
Chmielewski, Y., Friel, E., Cayrel, de Strobel G., & Bentolila, C. 1992, A&A, 263, 219 Google Scholar
Delbouille, L., & Roland, C. 1963, Atlas Photometrique du Spectre Solaire de λ7498 à λ12016 (Liège)Google Scholar
Demarque, P., Guenther, D. B., & van Altena, W. F. 1986, ApJ, 300, 773 CrossRefGoogle Scholar
ESA 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200Google Scholar
Foley, H. M. 1946, PhRv, 69, 621 Google Scholar
Furenlid, I., & Meylan, T. 1990, ApJ, 350, 827 Google Scholar
Grevesse, N., & Sauval, A. J. 1998, SSRv, 85, 161 Google Scholar
Holweger, H., & Müller, E. A. 1974, SoPh, 39, 19 Google Scholar
Kurucz, R. L. 1979, ApJS, 40, 1 Google Scholar
Lindholm, E. 1942, PhD Thesis, Uppsala University Google Scholar
Neuforge, C. 1993, A&A, 268, 650 Google Scholar
Neuforge-Verheecke, C., & Magain, P. 1997, A&A, 328, 261 Google Scholar
Noels, A., Grevesse, N., Magain, P., Neuforge, C., Baglin, A., & Lebreton, Y. 1991, A&A, 247, 91 Google Scholar
O'Mara, B. J. 1976, MNRAS, 177, 551 Google Scholar
Ünsold, A. 1955, Physik der Stern Atmosphären (2nd ed.) (Berlin: Springer)Google Scholar
Soderblom, D. R. 1986, A&A, 158, 273 Google Scholar