Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T00:10:36.043Z Has data issue: false hasContentIssue false

HINORA, a method for detecting ring-like structures in 3D point distributions I: Application to the Local Volume Galaxy catalogue

Published online by Cambridge University Press:  19 March 2024

Edward Olex*
Affiliation:
Departamento de Física Teórica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Alexander Knebe
Affiliation:
Departamento de Física Teórica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain Centro de Investigación Avanzada en Física Fundamental (CIAFF), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
Noam I. Libeskind
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
Dmitry I. Makarov
Affiliation:
Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz, 369167 Russia
Stefan Gottlöber
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
*
Corresponding author: Edward Olex, Email: edward.olex@estudiante.uam.es

Abstract

We present a new method – called HINORA (HIgh-NOise RANdom SAmple Consensus) – for the identification of regular structures in 3D point distributions. Motivated by the possible existence of the so-called Council of Giants, that is, a ring of 12 massive galaxies surrounding the Local Group in the Local Sheet with a radius of 3.75 Mpc, we apply HINORA to the Local Volume Galaxy catalogue confirming its existence. When varying the lower limit of K-band luminosity of the galaxy entering the catalogue, we further report on the existence of another ring-like structure in the Local Volume that now contains the Milky Way and M31. However, this newly found structure is dominated by low-mass (satellite) galaxies. While we here simply present the novel method as well as its first application to observational data, follow-up work using numerical simulations of cosmic structure formation shall shed light into the origin of such regular patterns in the galaxy distribution. Further, the method is equally suited to identify similar (or even different) structures in various kinds of astrophysical data (e.g. locating the actual ‘baryonic-acoustic oscillation spheres’ in galaxy redshift surveys).

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, G. S., Tully, R. B., Rizzi, L. & Karachentsev, I. D. 2019, ApL 872, L4 Google Scholar
Beare, R., Brown, M. J. I., Pimbblet, K., & Taylor, E. N. 2019, ApJ 873, 78.Google Scholar
Bell, E. F., & de Jong, R. S. 2001, ApJ 550, 212 Google Scholar
Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS 149, 289 Google Scholar
Bond, J. R. and Efstathiou, G. 1984, The ApL 285, L45 Google Scholar
Choi, S., Kim, T., & Yu, W. 2009, British Machine Vision Conference, BMVC 2009, London, UK, September 7-10, 2009. Proceedings, vol. 24. https://doi.org/10.5244/C.23.81.Google Scholar
Cole, S., Percival, W. J., Peacock, J. A., Norberg, P., Baugh, C. M., Frenk, C. S., Baldry, I., et al. 2005, MNRAS, 362, 505 Google Scholar
Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ 292, 371 Google Scholar
De Lapparent, V., Geller, M. J., & Huchra, J. P. 1986, Research supported by the Smithsonian Institution, 302, L1CrossRefGoogle Scholar
Eisenstein, D. J., Zehavi, I., Hogg, D. W., Scoccimarro, R., Blanton, M. R., Nichol, R. C., Scranton, R., et al. 2005, ApJ 633, 560 Google Scholar
Fingerhut, R. L., McCall, M. L., Argote, M., Cluver, M. E., Nishiyama, S., Rekola, R. T. F., Richer, M. G., Vaduvescu, O., & Woudt, P. A. 2010, ApJ 716, 792 Google Scholar
Fischler, M. A., & Bolles, R. C. 1981, Commun. ACM 24, 381 Google Scholar
Frenk, C. S., White, S. D. M., & Davis, M. 1983, ApJ 271, 417 Google Scholar
Geller, M. J., & Huchra, J. P. 1989, Science 246, 897 CrossRefGoogle Scholar
Guth, A. H. 1981, Phys. Rev. D 23, 347 Google Scholar
Holtzman, J. A. 1989, ApJS 71, 1 Google Scholar
Huchra, J., Davis, M., Latham, D., & Tonry, J. 1983, ApJS 52, 89 Google Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S., Skrutskie, M., & Huchra, J. P. 2000, AJ 119, 2498 Google Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E.& Huchra, J. P. 2003, AJ 125, 525 Google Scholar
Jarrett, T. H., Masci, F., Tsai, C. W., Petty, S., Cluver, M. E., Assef, R. J., Benford, D., et al. 2013. AJ 145, 6 Google Scholar
Kaisina, E. I., Makarov, D. I., Karachentsev, I. D., & Kaisin, S. S. 2012, Astrophys. Bull. 67, 115 Google Scholar
Karachentsev, I. D., & Kaisina, E. I. 2019, AstBu 74, 111 Google Scholar
Karachentsev, I. D., Makarov, D. I., & Kaisina, E. I. 2013, AJ 145, 101 CrossRefGoogle Scholar
Karachentsev, I. D., & Telikova, K. N. 2018, AN 339, 615 CrossRefGoogle Scholar
Kirby, E. M., Jerjen, H., Ryder, S. D., & Driver, S. P. 2008, AJ 136, 1866 CrossRefGoogle Scholar
Libeskind, N. I., Carlesi, E., Grand, R. J. J., Khalatyan, A., Knebe, A., Pakmor, R., Pilipenko, S., et al. 2020, MNRAS 498, 2968 Google Scholar
Linde, A.D. 1982, Phys. Lett. B 108, 389 CrossRefGoogle Scholar
Matas, J., & Chum, O. 2004, Image Vis. Comput. 22, 837 Google Scholar
McCall, M. L. 2014, MNRAS 440, 40 CrossRefGoogle Scholar
Neuzil, M. K., Mansfield, P., & Kravtsov, A. V. 2020, MNRAS 494, 2600 CrossRefGoogle Scholar
Peebles, P. J. E., and Yu, J. T. 1970, ApJ 162, 815 CrossRefGoogle Scholar
Percival, W. J., Baugh, C. M., Bland-Hawthorn, J., Bridges, T., Cannon, R., Cole, S., Colless, M., et al. 2001, MNRAS 327, 1297 Google Scholar
Raguram, R., Chum, O., Pollefeys, M., Matas, J., & Frahm, J.-M. 2013, IEEE Trans. Patt. Analy. Mach. Intell. 35, 2022Google Scholar
Raguram, R., Frahm, J.-M., & Pollefeys, M. 2008, in Computer Vision – ECCV 2008, edited by Forsyth, D., Torr, P., and Zisserman, A., 500–513. Berlin, Heidelberg: Springer Berlin Heidelberg Google Scholar
Soneira, R. M., & Peebles, P. J. E. 1977, ApJ 211, 115 Google Scholar
Tikhonov, N. A., & Galazutdinova, O. A. 2018, Astrophys. Bull. 73, 279 Google Scholar
Tully, R. B., Courtois, H. M., & Sorce, J. G. 2016, Astronom. J. 152, 50 CrossRefGoogle Scholar
Tully, R. B., & Fisher, J. R. 1978, in Large Scale Structures in the Universe, edited by Longair, M. S. and Einasto, J., 79:31. Proceedings of the IAU Symposium. January.Google Scholar
Tully, R. B., & Fisher, J. R. 1987, Atlas of nearby galaxies.Google Scholar
Tully, R. B., Howlett, C., & Pomarède, D. 2023, ApJ 954, 169 CrossRefGoogle Scholar
Tully, R. B., Kourkchi, E., Courtois, H. M., Anand, G. S., Blakeslee, J. P., Brout, D., de Jaeger, T., et al. 2023, ApJ 944, 94 Google Scholar
Tully, R. B., Shaya, E. J., Karachentsev, I. D., Courtois, H. M., Kocevski, D. D., Rizzi, L., & Peel, A. 2008, ApJ 676, 184 CrossRefGoogle Scholar
Turner, E. L., and Gott, III, J. R. 1975, ApL 197, L89CrossRefGoogle Scholar
Vaduvescu, O., McCall, M. L., Richer, M. G., & Fingerhut, R. L. 2005, Astron. J. 130, 1593 CrossRefGoogle Scholar
Vaduvescu, O., Richer, M. G., & McCall, M. L. 2006, AJ 131, 1318 Google Scholar
Vanderplas, J. T., Connolly, A. J., Ivezić, Ž., & Gray, A. 2012, in Conference on Intelligent Data Understanding (CIDU), 47–54.Google Scholar
Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G., Bird, S., Nelson, D., & Hernquist, L. 2014, Nature 509, 177 CrossRefGoogle Scholar
Xie, Y., Tian, J., & Zhu, X. X. 2020. IEEE Geosci. Rem. Sens. Mag. https://doi.org/10.1109/MGRS.2019.2937630.Google Scholar
Zel’dovich, Ya. B. 1970, A&A 5, 84Google Scholar
Ziparo, F., Smith, G. P., Mulroy, S. L., Lieu, M., Willis, J. P., Hudelot, P., McGee, S. L., et al. 2016, A&A 592, A9 CrossRefGoogle Scholar