Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T07:14:45.657Z Has data issue: false hasContentIssue false

Multi-wavelength Behaviour of III Zw2

Published online by Cambridge University Press:  05 March 2013

Nikita Salvi*
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, United Kingdom
Mat J. Page
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, United Kingdom
Jason A. Stevens
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, United Kingdom
Keith O. Mason
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, United Kingdom
Kinwah Wu
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

III Zw2 was observed with XMM-Newton in July 2000. Its X-ray spectrum can be described by a power law of photon index Γ≈1.7 with a Gaussian line at 6.7 KeV. There is no significant evidence of intrinsic absorption within the source or of a soft X-ray excess. Multi-wavelength light curves over a period of 25 years show related variations from the radio to X-rays. We interpret the radio to optical emission as synchrotron radiation, self-absorbed in the radio/millimetre region, and the X-rays as mainly due to Compton up-scattering of low energy photons by the population of high energy electrons that give rise to the synchrotron radiation.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2002

References

Aller, H. D., Aller, M. F., Latimer, G. E., & Hodge, P. E. 1985, ApJS, 59, 513 CrossRefGoogle Scholar
Arp, H. 1968, ApJ, 152, 1101 Google Scholar
Brunthaler, A., et al. 2000, A&A, 357, L45 Google Scholar
Chapman, G. N. F., Geller, M. J., & Huchra, J. P. 1985, ApJ, 297, 151 CrossRefGoogle Scholar
Clements, S. D., Smith, A. G., Aller, H. D., & Aller, M. F. 1995, AJ, 110, 529 Google Scholar
Condon, J. J., O'Dell, S. L., Puschell, J. J., & Stein, W. A. 1981, ApJ, 246, 624 CrossRefGoogle Scholar
de Robertis, M. 1985, ApJ, 289, 67 CrossRefGoogle Scholar
Edelson, R. A., & Malkan, M. A. 1987, ApJ, 323, 516 CrossRefGoogle Scholar
Falcke, H., et al. 1999, ApJ, 514, L17 Google Scholar
Hall, R., Rickett, M. J., Page, C. G., & Pounds, K. A. 1981, SSRv, 30, 47 Google Scholar
Hyland, A. R., & Allen, D. A. 1982, MNRAS, 199, 943 Google Scholar
Jansen, F., et al. 2001, A&A, 365, L1 Google Scholar
Kaastra, J. S., & de Korte, P. A. J. 1988, A&A, 198, 16 Google Scholar
Khachikian, E. Y., & Weedman, D. W. 1974, ApJ, 192, 581 Google Scholar
Landau, R., Epstein, E. E., & Rather, J. D. G. 1980, AJ, 85, 363 Google Scholar
Lebofsky, M. J., & Rieke, G. H. 1980, Nature, 284, 410 CrossRefGoogle Scholar
Lloyd, C. 1984, MNRAS, 209, 697 CrossRefGoogle Scholar
McAlary, C. W., McLaren, R. A., McGonegal, R. J., & Maza, J. 1983, ApJS, 52, 341 Google Scholar
Neugebauer, G., Oke, J. B., Becklin, E. E., & Matthews, K. 1979, ApJ, 230, 79 Google Scholar
Osterbrock, D. E. 1977, ApJ, 215, 733 CrossRefGoogle Scholar
Petre, R., Mushotzsky, R. F., Krolik, J. H., & Holt, S. S. 1984, ApJ, 280, 499 Google Scholar
Schnopper, H. W., et al. 1978, ApJ, 222, L91 CrossRefGoogle Scholar
Sembay, S., Hanson, C. G., & Coe, M. J. 1987, MNRAS, 226, 137 CrossRefGoogle Scholar
Tagliaferri, G., et al. 1988, ApJ, 331, L113 CrossRefGoogle Scholar
Wright, A. E., Allen, D. A., Krug, P. A., Morton, D. C., & Smith, M. G. 1977, IAUC, 3145, 2 Google Scholar