Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T16:21:35.459Z Has data issue: false hasContentIssue false

Simulating AXAF Grating Spectra of Accreting White Dwarfs

Published online by Cambridge University Press:  05 March 2013

Allyn F. Tennant
Affiliation:
ES-84 Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, AL 35812, USA; allyn.tennant@msfc.nasa.gov
Kinwah Wu
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia; kinwah@physics.usyd.edu.au
Stephen L. O'Dell
Affiliation:
ES-84 Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, AL 35812, USA; odell@cosmos.msfc.nasa.gov
Martin C. Weisskopf
Affiliation:
ES-01 Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, AL 35812, USA; martin@smoker.msfc.nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present simulated AXAF spectra of accreting white dwarfs, using parameters appropriate for magnetic cataclysmic variables. The very high spectral resolution that can be obtained with the High-Energy Transmission Grating of AXAF can resolve the keV X-ray emission lines that characterise the temperature, density and velocity profiles of the shock-heated emission regions of these systems. These simulations demonstrate that actual spectra will allow us to place constraints on the white-dwarf mass and the accretion rate of the systems. The high-resolution spectra also allow the measurement of the velocity of the accretion flow in regions close to the white-dwarf surface.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Arnaud, K. A. 1996, in Astronomical Data Analysis Software and Systems V, eds G. Jacoby & J. Barnes, ASP Conf. Series 101 (San Francisco: ASP), p. 17 Google Scholar
Chanmugam, G. 1992, ARA&A, 30, 143 Google Scholar
Cropper, M. 1990, Space Sci. Rev., 54, 195 CrossRefGoogle Scholar
Cropper, M., Ramsay, G., & Wu, K. 1998, MNRAS, 293, 222 CrossRefGoogle Scholar
Done, C., Osborne, J. P., & Beardmore, A. P. 1995, MNRAS, 276, 483 Google Scholar
Fujimoto, R., & Ishida, M. 1997, ApJ, 474, 774 CrossRefGoogle Scholar
Ishida, M. 1991, PhD Thesis, University of Tokyo Google Scholar
Ishida, M. 1997, in X-ray Imaging and Spectroscopy of Cosmic Hot Plasmas, eds F. Makino & K. Mitsuda (Tokyo: Universal Academy Press), p. 537 Google Scholar
Lumb, D. H., et al. 1993, Proc. SPIE, 2006, 265 CrossRefGoogle Scholar
Markert, T. H., et al. 1994, in EUV, X-ray and Gamma-ray Instrumentation for Astronomy V, eds O. H. W. Siegmund & J. V. Vallerga, Proc. SPIE, 2280, 168 Google Scholar
Mewe, R. 1990, in Physical Process in Hot Cosmic Plasmas, NATO ASI Series, eds W. Brinkmann et al. (Dordrecht: Kluwer), p. 39 Google Scholar
Mewe, R., Gronenschild, E. H. B. M., & van den Oord, G. H. J. 1985, A&AS, 62, 197 Google Scholar
Mewe, R., Kaastra, D. S., & Liedahl, D. A. 1995, Legacy (Journal of HEASARC), 6, 16 Google Scholar
Mukai, K., Ishida, M., & Osborne, J. 1997, in X-ray Imaging and Spectroscopy of Cosmic Hot Plasmas, eds F. Makino & K. Mitsuda (Tokyo: Universal Academy Press), p. 543 Google Scholar
Nauenberg, M. 1972, ApJ, 175, 417 Google Scholar
Tanaka, Y., Inoue, H., & Holt, S. S. 1994, PASJ, 46, L47 Google Scholar
van Teeseling, A., Kaastra, J. S., & Heise, J. 1996, A&A, 312, 186 Google Scholar
Weisskopf, M. C., O'Dell, S. L., Elsner, R. F., & Van Speybroeck, L. P. 1995, Proc. SPIE, 2515, 312 Google Scholar
Weisskopf, M. C., O'Dell, S. L., & Van Speybroeck, L. P. 1996, Proc. SPIE, 2805, 2 Google Scholar
Wilson, R. 1962, Quant. Spectr. Rad. Transf., 2, 477 Google Scholar
Wu, K. 1994, PASA, 11, 61 CrossRefGoogle Scholar
Wu, K., Chanmugam, G., & Shaviv, G. 1994, ApJ, 426, 664 Google Scholar
Wu, K., Cropper, M., & Ramsay, G. 1998, in preparationGoogle Scholar