Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-19T22:02:32.122Z Has data issue: false hasContentIssue false

Charge transport of ion pumps on lipid bilayer membranes

Published online by Cambridge University Press:  17 March 2009

E. Bamberg
Affiliation:
Max-Planck-Institut für Biophysik, Kennedyallee 70, D-6000 Frankfurt am Main, FRG
H.-J. Butt
Affiliation:
Max-Planck-Institut für Biophysik, Kennedyallee 70, D-6000 Frankfurt am Main, FRG
A. Eisenrauch
Affiliation:
Max-Planck-Institut für Biophysik, Kennedyallee 70, D-6000 Frankfurt am Main, FRG
K. Fendler
Affiliation:
Max-Planck-Institut für Biophysik, Kennedyallee 70, D-6000 Frankfurt am Main, FRG

Extract

Ion pumps create ion gradients across cell membranes while consuming light energy or chemical energy. The ion gradients are used by the corresponding cell types for passive-ion transport via ion channels or carriers or for accumulation of nutrients like sugar or amino acids via cotransport systems or antiporters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, R. W. (1967). Biochemical aspects of active transport. A. Rev. Biochem. 36, 727756.CrossRefGoogle ScholarPubMed
Apell, H.-J., Häring, V. & Rondna, M. (1990). Na+K+ATPase in artificial vesicles. Comparison of Na+, K+ and Na+ only pumping mode. Biochim. biophys. Acta 1023, 8190.Google Scholar
Avison, M. J., Gullans, S. R., Orino, T., Giebisch, G. & Shulman, R. G. (1987). Measurement of Na¯-K+ coupling ration of Na+-K+-ATPase in rabbit proximal tubules. Am. J. Physiol. 253, C126136.CrossRefGoogle Scholar
Bahinski, A., Nakao, M. & Gadsby, D. C. (1988). Potassium translocation by the Na+/K+ pump is voltage insensitive. Proc. natn. Acad. Sci. U.S.A. 85, 34123416.CrossRefGoogle ScholarPubMed
Bamberg, E., Apell, H.-J., Dencher, N.-A., Sperling, W., Stieve, H. & Läuger, P. (1979). Pump currents generated by bacteriorhodopsin on planar lipid membranes. Biophys. Struct. Mech. 5, 277292.Google Scholar
Bamberg, E., Hegemann, P. & Oesterhelt, D. (1984). Reconstitution of the lightdriven electrogenic ion pump halorhodopsin in black lipid membranes. Biochim. biophys. Acta 733, 5360.CrossRefGoogle Scholar
Bamberg, E., Tittor, J. & Oesterhelt, D. (1992). Light-driven proton or chloride pumping by halorhodopsin. Proc. natn. Acad. Sci., U.S.A. (in the press).Google Scholar
Blanck, A. & Oesterhelt, D. (1987). The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J. 6, 265273.CrossRefGoogle ScholarPubMed
Borlinghaus, R., Apell, H. J. & Läuger, P. (1987). Fast charge translocations associated with partial reactions of the Na, K-pump. I. Current and voltage transients after photochemical release of ATP. J. Memb. Biol. 97, 161178.CrossRefGoogle ScholarPubMed
Cornelius, F. (1989). Uncoupled Na+ efflux on reconstituted shark Na, K ATPase is electrogenic. Biochim. biophys. Res. Commun. 160, 801807.CrossRefGoogle ScholarPubMed
Cornelius, F. & Skou, J. C. (1985). Na+K+ exchange by Na+K+ATPase reconstituted into liposomes: evaluation of pump stoichiometry and response to ATP and ADP. Biochim. biophys. Acta 818, 211221.CrossRefGoogle ScholarPubMed
De Weer, P. (1984). Electrogenic pumps: theoretical and practical considerations. In Electrogenic Transport: Fundamental Principles and Physiological Implications (ed. Blaustein, M. P. and Lieberman, M.), pp. 115. New York: Raven Press.Google Scholar
De Weer, P. (1986). The electrogenic sodium pump: thermodynamics and kinetics. In Fortschritte der Zoologie: Membrane Control of Cellular Activity (ed. L¨ttgau, H. C.), pp. 387399. New York: Gustav Fischer Verlag, Stuttgart.Google Scholar
De Weer, P., Gadsby, D. C. & Rakowsky, R. F. (1988). Voltage dependence of the Na/K pump. Ann. Rev. Physiol. 50, 225241.Google Scholar
Diller, R., Stockburger, M., Oesterhelt, D. & Tittor, J. (1987). Resonance Raman study of intermediates of the halorhodopsin photocycle. FEBS Lett. 217, 297304.CrossRefGoogle Scholar
Drachev, L. A., Frolov, V. N., Kaulen, A. D., Liberman, E. A., Ostroumov, S. A., Plakunova, V. G., Semenov, A. Y. & Skulachev, V. P. (1976a). Reconstitution of biological molecular generators of electric current bacteriorhodopsin. J. biol. Chem. 251, 70597065.Google Scholar
Drachev, L. A., Jasaitis, A. A., Mikelsaar, H., Nemecek, I. B., Semenov, A. Y., Semenova, E. G., Severina, I. I. & Skulachev, V. P. (1976b). Reconstitution of biological molecular generators of electric current. J. biol. Chem. 251, 70777082.Google Scholar
Engelhard, M., Hess, B., Metz, G., Kreutz, W., Siebert, F., Soppa, J. & Oesterhelt, D. (1990). High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspartic acids and structural implications of single site mutations. Eur. Biophys. J. 18, 124.CrossRefGoogle ScholarPubMed
Eisenrauch, A. & Bamberg, E. (1990). Voltage-dependent pump currents of the sarcoplasmic reticulum Ca2+-ATPase in planar lipid membranes. FEBS Lett. 268, 152156.CrossRefGoogle ScholarPubMed
Eisenrauch, A., Grell, E. & Bamberg, E. (1991). Voltage dependence of the NaKATPase incorporated into planar lipid membranes. In The Sodium Pump. Structure, Mechanism and Regulation (ed. Kaplan, J. H. and de Weer, P.). New York: The Rockefeller University Press.Google Scholar
Eisner, D. A. & Lederer, W. J. (1980). Characterization of the electrogenic sodium pump in cardiac purkinje fibers, j. Phys. 303, 441474.Google Scholar
Fahr, A., Läuger, P. & Bamberg, E. (1981). Photocurrent kinetics of purple-membrane sheets bound to planar bilayer membranes. J. Membr. Biol. 60, 5162.CrossRefGoogle Scholar
Fendler, K., Grell, E., Haubs, M. & Bamberg, E. (1985). Pump currents generated by purified Na+K+-ATPase from kidney on black lipid membranes. EMBO J. 4, 30793085.CrossRefGoogle ScholarPubMed
Fendler, K., Grell, E. & Bamberg, E. (1987). Kinetics of pump currents generated by the Na+K+-ATPase. FEBS Lett. 224, 8388.Google Scholar
Fendler, K., Fröhlich, J., Jaruchewsky, S., Hobbs, A., Albers, W., Bamberg, E. & Grell, E. (1991). Correlation of charge translocation with the reaction cycle of the Na+K+ATPase. In The Sodium Pump. Recent Developments (ed. Kaplan, J. H. and de Weer, P.). New York: The Rockefeller University Press.Google Scholar
Forbush, B. & Klodos, I. (1991). Rate-limiting steps in Na translocation by the Na/K pump. In The Sodium Pump: Structure, Mechanism and Regulation (ed. Kaplan, J. H. and de Weer, P.). New York: The Rockefeller University Press.Google Scholar
Forte, J. G., Forte, G. M. & Saltman, P. (1967). K+ stimulated phosphatase of microsomes from gastric mucosa. J. cell Physiol. 69, 293304.Google Scholar
Fröhlich, J. P., Hobbs, A. S. & Albers, R. W. (1983). Evidence for parallel pathways of phosphoenzyme formation in the mechanism of ATP hydrolysis by Electrophorus Na, K-ATPase. Curr. Top. in membr. Transp. 19, 513535.Google Scholar
Gadsby, D. C. & Nakao, M. (1989). Steady state current–voltage relationship of the Na/K pump in guinea pig ventricular myocytes. J. gen. Physiol. 94, 511537.Google Scholar
Gadsby, D. C., Kimura, J. & Noma, A. (1985). Voltage dependence of Na/K pump current in isolated heart cells. Nature, Lond. 315, 6365.CrossRefGoogle ScholarPubMed
Gerwert, K., Hess, B., Soppa, J. & Oesterhelt, D. (1989). Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc. natn. Acad. Sci. U.S.A. 86, 49434947.CrossRefGoogle ScholarPubMed
Gerwert, K., Souvignier, G. & Hess, B. (1990). Simultaneous monitoring of lightinduced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc. natn. Acad. Sci. U.S.A. 87, 97749778.CrossRefGoogle ScholarPubMed
Glitsch, H. G., Pusch, H., Schumacher, T. & Verdonck, F. (1982). An identification of the K activated Na pump current in sheep purkinje fibres. Pflügers Arch, ges Physiol. 394, 256263.Google Scholar
Glynn, I. M. (1985). The Na+K+-transporting adenosine triphosphatase. In The Enzymes of Biological Membranes, Vol. 3 (ed. Martonosi, A.), pp. 35314. New York: Plenum.CrossRefGoogle Scholar
Glynn, I. M., Hara, Y., Richards, D. E. & Steinberg, M. (1987). Comparison of rates of cation release and of conformational change in dog kidney Na+K+-ATPase. J. Phys. 383, 477485.Google ScholarPubMed
Goldshleger, R., Karlish, S. J. D., Rephaeli, A. & Stein, W. Dc. (1987). The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles. J. Phys. 387, 331355.Google Scholar
Hegemann, P., Oesterhelt, D. & Bamberg, E. (1985). The transport activity of the light-driven chloride pump halorhodopsin is regulated by green and blue light. Biochim. biophys. Acta 819, 195205.CrossRefGoogle Scholar
Helmich-De Jong, M. I., van Emst-de Vries, S. E. & De Pont, J. J. H. H. M. (1987). Conformational states of (K+ + H+)-ATPase studied using trypsin digestion as a tool. Biochim. biophys. Acta 905, 358370.CrossRefGoogle Scholar
Henderson, R., Baldwin, J. M., Ceska, T. A., Beckmann, E., Zemlin, F. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. molec. Biol. 213, 899929.Google Scholar
Herrmann, T. R. & Rayfield, G. W. (1978). The electrical response to light of bacteriorhodopsin in planar membranes. Biophys. J. 21, 111125.Google Scholar
Hobbs, A. S., Albers, R. W. & Froehlich, J. P. (1985). Quenched-flow determination of the E1P to E2P transition rate constant in electric organ Na, K-ATPase. In The Sodium Pump (ed. Glynn, I. and Ellory, C.), pp. 355361. Cambridge: The Company of Biologists Ltd.Google Scholar
Holz, M., Drachev, L. A., Mogi, T., Otto, H., Kaulen, A. D., Heyn, M. P., Skulachev, V. & Khorana, H. G. (1989). Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc. natn. Acad. Sci. U.S.A. 86, 21672171.Google Scholar
Jackson, R. J., Mendlein, J. & Sachs, G. (1983). Interaction of fluorescein isothiocyanate with the (H+-K+)-ATPase. Biochim. biophys. Acta 731, 915.Google Scholar
Kaplan, J. H., Forbush, B. & Hoffman, J. F. (1978). Rapid photolytic release of adenosine 5-triphosphate from a protected analogue: utilization by the Na: K pump of human red blood cell ghosts. Biochemistry 17, 19291935.CrossRefGoogle Scholar
Karlish, S. J. D. & Yates, D. W. (1978). Tryptophan fluorescence of (Na+ + K+)- ATPase as a tool for study of the enzyme mechanism. Biochim. biophys. Acta 527, 115–113.Google Scholar
Keszthelyi, L. & Ormos, P. (1980). Electrical signals associated with the photocycle of bacteriorhodopsin. FEBS Lett. 109, 189193.Google Scholar
Läuger, P. (1984). Thermodynamic and kinetic properties of electrogenic ion pumps. Biochim. biophys. Acta 779, 307341.CrossRefGoogle ScholarPubMed
Läuger, P. (1988). Electrogenic properties of the Na+/K+ pump. In The Ion Pumps: Structure, Function, Regulation (ed. Stein, W. D.), pp. 217224. New York: Alan R. Liss.Google Scholar
Läuger, P. (1991). Electrogenic Ion Pumps. Sunderland: Sinauer Associates.Google Scholar
Lafaire, A. V. & Schwarz, W. (1986). Voltage dependence of the rheogenic Na+K+ ATPase in the membrane of Oocytes of Xenopus Laevis. J. Membr. Biol. 91, 4351.Google Scholar
Lanyi, J. K. (1990). Halorhodopsin, a light-driven electrogenic chloride transport system. Physiol. Rev. 70, 319330.Google Scholar
Lederer, W. J. & Nelson, M. T. (1984). Sodium pump stoichiometry determined by simultaneous measurements of sodium efflux and membrane current in barnacle. J. Phys. 348, 665677.Google Scholar
Lee, J., Simpson, G. & Scholes, P. (1974). An ATPase from dog gastric mucosa: Changes of outer pH in suspensions of membrane vesicles accompanying ATP hydrolysis. Biochem. biophys. Res. Commun. 60, 825832.Google Scholar
Lorentzon, P., Sachs, G. & Wallmark, B. (1988). Inhibitory effects of cations on the gastric HK-ATPase. A potential sensitive step in the K-limb of the pump cycle. J. biol. Chem. 263, 10.70510.710.Google Scholar
Mathies, R. A., Lin, S. W., Ames, J. B. & Pollard, W. T. (1991). From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. A. Rev. Biophys. Chem. 20, 491518.CrossRefGoogle ScholarPubMed
McCray, J. A., Herbettte, L., Kihara, T. & Trentham, D. R. (1980). A new approach to time-resolved studies of ATP-requiring biological systems: laserflash photolysis of caged ATP. Proc. natn. Acad. Sci. U.S.A. 77, 72377241.Google Scholar
Morii, M., Ishimura, N. & Takeguchi, N. (1984). Quasi-elastic light scattering studies of conformational states of the (H+K+)-ATPase. Intervesicular aggregation of gastric vesicles by disulfide cross-linking. Biochemistry 23, 68186821.Google Scholar
Nagel, G., Fendler, K., Grell, E. & Bamberg, E. (1987). Na+ currents generated by the purified (Na+K+)-ATPase on planar lipid membranes. Biochim. biophys. Acta 901, 239249.CrossRefGoogle ScholarPubMed
Nakao, M. & Gadsby, D. C. (1986). Voltage dependence of the Na translocation by the Na/K pump. Nature, Lond. 323, 628630.Google Scholar
Oesterhelt, D., Hegemann, P. & Tittor, J. (1985). The photocycle of the chloride pump halorhodopsin. II: Quantum yields and a kinetic model. EMBO J. 4, 9, 23512356.Google Scholar
Oesterhelt, D., Tittor, J. & Bamberg, E. (1992). A unifying concept for ion translocation by retinal proteins. J. Bioenerget. Biomembr. 24, 181191.CrossRefGoogle ScholarPubMed
Post, R. L., Kume, S., Tobin, T., Orcutt, B. & Sen, A. K. (1969). Flexibility of an active center in sodium plus potassium adenosine triphosphatase. J. gen. Physiol. 54, 306S326S.Google Scholar
Rakowski, R. F. & Paxson, C. L. (1988). Voltage dependence of Na/K pump current in Xenopus oocytes. J. Membr. Biol. 106, 173182.Google Scholar
Rakowski, R. F., Vasilets, L. A. & Schwarz, W. (1990). Conditions for a negative slope in the current-voltage relationship of the Na/K pump in Xenopus oocytes. Biophys. J. 57, 182a (Abstr.).Google Scholar
Rakowski, R. F. (1992). Membrane charge movement resulting from a half cycle of electroneutral Na+/Na+ exchange by the Na/K pump. J. gen. Physiol. (in the press).Google Scholar
Rephaeli, A., Richards, D. E. & Karlish, S. J. D. (1986). Electrical potential accelerates the EiP(Na)-E2P conformational transition of (Na, -K)-ATPase in reconstituted vesicles. J. biol. Chem. 261, 1243712440.Google Scholar
Sachs, G., Chang, H. H., Rabon, E., Schackmannc, R., Lewin, M. & Saccomani, G. (1976). A non electrogenic H+ pump in plasma membranes of hog stomach. J. biol. Chem. 251, 76907698.CrossRefGoogle Scholar
Schobert, B. & Lanyi, J. K. (1982). Halorhodopsin is a light driven chloride pump. J. biol. Chem. 257, 1030610313.Google Scholar
Schrijen, J. J., Van Groningen-Luyben, W. A. H. M., De Pont, J. J. H. H. M. & Bonting, S. L. (1980). Studies on (H+ + K+)-ATPase I. Essential arginine residue in its substrate binding center. Biochim. biophys. Acta 597, 331344.Google Scholar
Schrijen, J. J., Van Groningen-Luyben, W. A. H. M., De Pont, J. J. H. H. M. & Bonting, S. L. (1981). Studies on (H+ + K+)-ATPase II. Role of sulfhydryl groups in its reaction mechanism. Biochim. biophys. Acta 640, 473486.Google Scholar
SChulten, K. & Tavan, P. (1978). A mechanism for the light-driven proton pump of Halobaderium halobium. Nature, Lond. 272, 8586.CrossRefGoogle ScholarPubMed
Sen, A. K. & Post, R. L. (1964). Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. J. biol. Chem. 239, 345352.CrossRefGoogle ScholarPubMed
Shull, G. E. & Greeb, J. (1988). Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to (Na+K+)-ATPase and other transport ATPases. J. biol. Chem. 263, 86468657.Google Scholar
Shull, G. E. & Lingrel, J. B. (1986). Molecular cloning of the rat stomach (H+ + K+)ATPase. J. biol. Chem. 261, 1678816791.CrossRefGoogle ScholarPubMed
Shull, G. E., Schwartz, A. & Lingrel, J. B. (1985). Amino-acid sequence of the catalytic subunit of the (Na++K+)-ATPase deduced from complementary DNA. Nature, Lond. 316, 691695.CrossRefGoogle ScholarPubMed
Stürmer, W., Bühler, R., Apell, H.-J. & Läuger, P. (1991). Charge translocation by the Na, K pump. II. Ion binding and release at the extracellular face. J. Membr. Biol. 121, 163176.Google Scholar
Tittor, J., Oesterhelt, D., Maurer, R., Desel, H. & Uhl, R. (1987). The photochemical cycle of halorhodopsin: absolute spectra of intermediates obtained by flash photolysis and fast difference spectra measurements. Biophys. J. 52, 9991006.Google Scholar
Trissl, H. W. (1990). Photoelectric Measurements of Purple Membranes. Photochem. Photobiol. 51, 793818.CrossRefGoogle ScholarPubMed
Varo, G. & Lanyi, J. K. (1991a). Kinetic and Spectroscopic Evidence for an Irreversible Step Between Deprotonation and Reprotonation. Biochemistry 30, 50085015.Google Scholar
Varo, G. & Lanyi, J. K. (1991b). Thermodynamics and Energy Coupling in the Bacteriorhodopsin Photocycle. Biochemistry 30, 50165022.Google Scholar
Wallmark, B., Stewart, H. B., Rabon, E., Saccomani, G. & Sachs, G. (1980). The catalytic cycle of gastric (H+ + K+)-ATPase. J. biol. Chem. 255, 53135319.Google Scholar