Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-21T20:06:55.378Z Has data issue: false hasContentIssue false

Evolution of higher-organism DNA

Published online by Cambridge University Press:  17 March 2009

David E. Kohne
Affiliation:
Biophysics Section, Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, D.C., U.S.A. 20015

Extract

A great deal of information about evolutionary events and processes has been inferred from careful studies of fossil records. Other forms of evidence have also contributed greatly to the understanding of evolution. Comparative biochemistry (Florkin, 1949), immunology (Boyden, 1942), protein sequencing (Dayoff, 1969; Anfinsen, 1959), and early DNA studies (McCarthy & Bolton, 1963; Schildkraut, Marmur & Doty, 1961) have for the most part corroborated earlier evolutionary findings, and at the same time provided new understanding of molecular processes in evolution. Of these approaches the comparison of DNA seems most promising since a relatively precise quantitative comparison can be made of all of the genetic material of different species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S. & Jones, J. K. (1967). Recent Mammals of the World: A synopsis of families. New York: Ronald Press.Google Scholar
Anfinsen, C. (1959). Molecular basis of evolution. New York: John Wiley and Sons Inc.Google Scholar
Bautz, E. K. & Bautz, F. A. (1964). The influence of non-complementary bases on the stability of ordered polynucleotides. Proc. natn. Acad. Set. U.S.A. 52, 14761481.CrossRefGoogle Scholar
Bernardi, G. (1965). Chromatography of nucleic acids on hydroxyapatite. Nature, Land. 206, 779.CrossRefGoogle ScholarPubMed
Billeter, M. A.., Weissmann, C. & Warner, R. C. (1966). Replication of viral RNA. IX. Properties of double-stranded RNA from E. coli infected with bacteriophage MS2. J. molec. Biol. 17, 145.CrossRefGoogle Scholar
Blrnstiel, M., Speirs, J., Purdom, I., Jones, K. & Loening, W. (1968). Properties and composition of the isolated ribosomal DNA satellite of Xenopus laevis. Nature, Lond. 219, 454463.CrossRefGoogle Scholar
Bolton, E. T. & McCarthy, B. J. (1962). A general method for the isolation of RNA complementary to DNA. Proc. natn. Acad. Sci. U.S.A. 48, 13901397.CrossRefGoogle ScholarPubMed
Boyden, A. (1942). Systematic serology: A critical appreciation. Physiol. Zool. 15, 109145.CrossRefGoogle Scholar
Britten, R. J. (1969). Repeated sequences in human DNA. Yb. Carnegie Instn Wash. 67, 327330.Google Scholar
Britten, R. J. & Davidson, E. (1969). Gene regulation for higher cells: A theory. Science, N.Y. 165, 349358.CrossRefGoogle ScholarPubMed
Britten, R. J. & Kohne, D. E. (1967). Nucleotide sequence repetition in DNA. Yb. Carnegie Inst Wash. 65, 78.Google Scholar
Britten, R. J. & Kohne, D. E. (1968). Repeated sequences in DNA. Science, N.Y. 161, 529540.CrossRefGoogle ScholarPubMed
Britten, R. J. & Kohne, D. E. (1968 a). Repeated nucleotide sequences. Yb. Carnegie Instn Wash. 66, 73.Google Scholar
Britten, R. J. & Smith, J. (1970). A bovine genome. Yb. Carnegie Instn Wash. 68, 378386.Google Scholar
Britten, R. J. & Waring, M. J. (1965). Renaturation of the DNA of higher organisms. Yb. Carnegie Instn Wash. 64, 316321.Google Scholar
Brown, D. D. & Dawid, I. (1968). Specific gene amplification in oocytes. Science, N.Y. 160, 272280.CrossRefGoogle ScholarPubMed
Cairns, J. (1963). The chromosome of E. coli. Cold Spring Harb Symp. quant. Biol. 28, 43.CrossRefGoogle Scholar
Church, R. B. & McCarthy, B. J. (1967). RNA synthesis in regenerating and embryonic liver. The synthesis of new species of RNA during regeneration of mouse liver after partial hepatectomy. J. molec. Biol. 23, 459.CrossRefGoogle ScholarPubMed
Corneo, G., Ginelli, E. & Polli, E. (1968). Isolation of complementary strands of a human satellite DNA. J. molec. Biol. 33, 331335.CrossRefGoogle ScholarPubMed
Cowie, D. B. (1965). Homology of viral and bacterial DNA. Yb. Carnegie Instn Wash. 65, 336.Google Scholar
Dayoff, M. (1969). Computer analysis of protein evolution. Scient. Am. 221, 87.Google Scholar
Denhardt, D. T. (1966). A membrane filter technique for the detection of complementary RNA. Biochem. biophys. Res. Commun. 23, 641646.CrossRefGoogle Scholar
Drake, J. W. (1966). Spontaneous mutations accumulating in bacteriophage T4 in the complete absence of DNA replication. Proc. natn. Acad. Sci. U.S.A. 55, 738.CrossRefGoogle ScholarPubMed
Flamm, W. G., McCallum, M. & Walker, P. M. B. (1967). The isolation of complementary strands from a mouse DNA fraction. Proc. natn. Acad. Sci. U.S.A. 57, 17291734.CrossRefGoogle ScholarPubMed
Flamm, W. G., Walker, P. M. B. & McCallum, M. (1969). Renaturation and isolation of single strands from the nuclear DNA of the guinea pig. J. molec. Biol. 42, 441455.CrossRefGoogle ScholarPubMed
Florkin, M. (1949) Biochemical Evolution. New York: Academic Press.Google Scholar
Gelderman, A. H., Rake, A. V. & Britten, R. J. (1969). Genetic expression of non-repeated DNA sequences in the mouse. Yb. Carnegie Instn Wash. 67, 320325.Google Scholar
Hoyer, B. H., McCarthy, B. J. & Bolton, E. T. (1963). Complementary RNA in nucleus and cytoplasm of mouse liver cells. Science, N. Y. 140, 14081412.CrossRefGoogle ScholarPubMed
Hoyer, B. H., McCarthy, B. J. & Bolton, E. T. (1964). A molecular approach to the systematics of higher organisms. Science, N.Y. 144, 959967.CrossRefGoogle Scholar
Hoyer, B. H. & Roberts, R. B. (1967). Studies of DNA homology by the DNA-agar technique. In Molecular Genetics. New York: Academic Press.Google Scholar
Kimura, M. (1969). The rate of molecular evolution considered from the standpoint of population genetics. Proc. natn. Acad. Sci. U.S.A. 63, 1181.CrossRefGoogle ScholarPubMed
King, J. L. & Jukes, T. H. (1969). Non-Darwinian evolution: Random fixation of selectively neutral mutations. Science, N. Y. 164, 788798.CrossRefGoogle Scholar
Kohne, D. E., Chiscon, J. A. & Hoyer, B. H. (1970). Evolution of primate DNA. Science, N. Y. (in the Press).Google Scholar
Laird, C., McConaughy, B. L. & McCarthy, B. J. (1969). Rate of fixation of nucleotide substitutions in evolution. Nature, Lond. 224, 149154.CrossRefGoogle ScholarPubMed
Mann, T. (1964). In The Biochemistry of Semen and of the Male Reproductive Tract, pp. 146147. New York: John Wiley and Sons.Google Scholar
Marmur, J. & Doty, P. (1961). Thermal renaturation of deoxyribonucleic acids. J. molec. Biol. 3, 585.CrossRefGoogle ScholarPubMed
Marmur, J. & Doty, P. (1962). Determination of base composition of DNA from its thermal denaturation temperature. J. molec. Biol. 5, 109.CrossRefGoogle ScholarPubMed
Marmur, J., Round, R. & Schildkraut, C. L. (1963). Denaturation and renaturation of DNA. In Progress in Nucleic Acid Research, vol. 1. New York: Academic Press.Google Scholar
Martin, M. & Hoyer, B. H. (1966). Thermal stabilities and species specificities of reannealed animal DNA's. Biochemistry, N.Y. 5, 27062713.CrossRefGoogle Scholar
Martin, M. & Hoyer, B. H. (1967). Adenine plus thymine and guanine plus cytosine enriched fractions of animal DNAs as indicators of polynucleotide homologies. J. molec. Biol. 27, 113129.CrossRefGoogle Scholar
McCarthy, B. J. (1965). The evolution of base sequences in polynucleotides. In Progress in Nucleic Add Research, vol. 4. New York: Academic Press.Google Scholar
McCarthy, B. J. & Bolton, E. T. (1963). An approach to the measure of genetic relatedness among organisms. Proc. natn. Acad. Sci. U.S.A. 50, 156.CrossRefGoogle Scholar
McCarthy, B. J. & McConaughy, B. L. (1968). Related base sequences in the DNA of simple and complex organisms. I. DNA/DNA duplex formation and the incidence of partially related base sequences in DNA. Biochem. Genet. 2, 3854.CrossRefGoogle ScholarPubMed
McClaren, A. & Walker, P. (1965). Genetic discrimination by means of DNA/DNA binding. Genet. Res. 6, 230247.CrossRefGoogle Scholar
Miyazawa, Y. & Thomas, C. A. (1965). The nucleotide composition of short segments of DNA molecules. J. molec. Biol. 11, 223.CrossRefGoogle ScholarPubMed
Polli, E., Corneo, G., Ginelli, E. & Bianchi, P. (1965). Fractionation of calf thymus DNA by density gradient centrifugation. Biochim. biophys. Acta 103, 672.CrossRefGoogle Scholar
Romer, A. S. (1966). In Vertebrate Paleontology. Chicago: University of Chicago Press.Google Scholar
Ross, P. D. & Sturtevant, T. M. (1962). On the kinetics and mechanism of helix formation: The two stranded poly (A + U) complex from polyriboadenylic acid and polyuridylic acid. J. Am. chem. Soc. 84, 4503.CrossRefGoogle Scholar
Schildkraut, C. L., Marmur, J. & Doty, P. (1961). The formation of hybrid DNA molecules and their use in studies of DNA homologies. J. molec. Biol. 3, 595.CrossRefGoogle ScholarPubMed
Simons, E. (1964). The early relatives of man. Scient. Am. 211, 5062.CrossRefGoogle ScholarPubMed
Simpson, G. G. (1959). The nature and origin of supraspecific taxa. In Cold Spring Harb. Symp. quant. Biol. 24, 255272.CrossRefGoogle ScholarPubMed
Sinclair, J. H. & Brown, D. D. (1968). Conservation of ribosomal DNA sequences among eukaryotes. Fedn Proc. 27, 335.Google Scholar
Uhlenbeck, O., Harrison, R. & Doty, P. (1968). Some effects of non-complementary bases on the stability of helical complexes of polyribonucleotides. In Molecular Associations in Biology, p. 107. New York: Academic Press.CrossRefGoogle Scholar
Waring, M. J. & Britten, R. J. (1966). Nucleotide sequence repetition. A rapidly reassociating fraction of mouse DNA. Science, N.Y. 154, 791.CrossRefGoogle ScholarPubMed
Watson, J. D. (1965). Molecular Biology of the Gene. New York: W. A. Benjamin Inc.Google Scholar
Wetmur, J. G. & Davidson, N. (1968). Kinetics of renaturation of DNA. J. molec. Biol. 31, 349.CrossRefGoogle ScholarPubMed
Wilson, A. C. & Sarich, V. M. (1969). A molecular time scale for human evolution. Proc. natn. Acad. Sci. U.S.A. 63, 1088.CrossRefGoogle ScholarPubMed