Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T09:39:00.779Z Has data issue: false hasContentIssue false

In cellulo FRET-FLIM and single molecule tracking reveal the supra-molecular organization of the pyoverdine bio-synthetic enzymes in Pseudomonas aeruginosa

Published online by Cambridge University Press:  09 January 2020

Véronique Gasser
Affiliation:
Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
Morgane Malrieu
Affiliation:
Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Illkirch, France
Anne Forster
Affiliation:
Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
Yves Mély
Affiliation:
Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Illkirch, France
Isabelle J. Schalk
Affiliation:
Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
Julien Godet*
Affiliation:
Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Illkirch, France Groupe Méthode Recherche Clinique, Hôpitaux Universitaires de Strasbourg, France
*
Author for correspondence: Julien Godet, E-mail: julien.godet@unistra.fr

Abstract

The bio-synthesis of pyoverdine (PVD) in Pseudomonas aeruginosa involves multiple enzymatic steps including the action of non-ribosomal peptide synthetases (NRPSs). One hallmark of NRPS is their ability to make usage of non-proteinogenic amino-acids synthesized by co-expressed accessory enzymes. It is generally proposed that different enzymes of a secondary metabolic pathway assemble into large supra-molecular complexes. However, evidence for the assembly of sequential enzymes in the cellular context is sparse. Here, we used in cellulo single-molecule tracking and Förster resonance energy transfer measured by fluorescence lifetime microscopy (FRET-FLIM) to explore the spatial partitioning of the ornithine hydroxylase PvdA and its interactions with NRPS. We found PvdA was mostly diffusing bound to large complexes in the cytoplasm with a small exchangeable trapped fraction. FRET-FLIM clearly showed that PvdA is physically interacting with PvdJ, PvdI, PvdL, and PvdD, the four NRPS involved in the PVD pathway in Pseudomonas aeruginosa PAO1. The binding modes of PvdA were strikingly different according to the NRPS it is interacting with, suggesting that PvdA binding sites have co-evolved with the enzymatic active sites of NRPS. Our data provide evidence for strongly organized multi-enzymatic complexes responsible for the bio-synthesis of PVD and illustrate how binding sites have evolved to finely control the co-localization of sequential enzymes and promote metabolic pathway efficiency.

Type
Report
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The authors contributed equally to this work.

References

Ackerley, DF, Caradoc-Davies, TT and Lamont, IL (2003) Substrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa. Journal of Bacteriology 185, 28482855.CrossRefGoogle ScholarPubMed
An, S, Kumar, R, Sheets, ED and Benkovic, SJ (2008) Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science (New York, N.Y.) 320, 103106. https://doi.org/10.1126/science.1152241.CrossRefGoogle ScholarPubMed
Bastiaens, PI and Squire, A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends in Cell Biology 9, 4852.CrossRefGoogle Scholar
Batisse, J, Guerrero, SX, Bernacchi, S, Richert, L, Godet, J, Goldschmidt, V, Mély, Y, Marquet, R, de Rocquigny, H and Paillart, J-C (2013) APOBEC3G impairs the multimerization of the HIV-1 vif protein in living cells. Journal of Virology 87, 64926506.CrossRefGoogle ScholarPubMed
Baum, LE, Petrie, T, Soules, G and Weiss, N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics 41, 164171.CrossRefGoogle Scholar
Betzig, E, Patterson, GH, Sougrat, R, Wolf Lindwasser, O, Olenych, S, Bonifacino, JS, Davidson, MW, Lippincott-Schwartz, J and Hess, HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science (New York, N.Y.) 313, 16421645.CrossRefGoogle ScholarPubMed
Brown, AS, Calcott, MJ, Owen, JG and Ackerley, DF (2018) Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Natural Product Reports 35, 12101228.CrossRefGoogle ScholarPubMed
Castellana, M, Wilson, MZ, Xu, Y, Joshi, P, Cristea, IM, Rabinowitz, JD, Gitai, Z and Wingreen, NS (2014) Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nature Biotechnology 32, 10111018.CrossRefGoogle ScholarPubMed
Chenouard, N, Smal, I, de Chaumont, F, Maška, M, Sbalzarini, IF, Gong, Y, Cardinale, J, Carthel, C, Coraluppi, S, Winter, M, Cohen, AR, Godinez, WJ, Rohr, K, Kalaidzidis, Y, Liang, L, Duncan, J, Shen, H, Xu, Y, Magnusson, KEG, Jaldén, J, Blau, HM, Paul-Gilloteaux, P, Roudot, P, Kervrann, C, Waharte, F, Tinevez, JY, Shorte, SL, Willemse, J, Celler, K, van Wezel, JP, Dan, HW, Tsai, YS, Ortiz de Solórzano, C, Olivo-Marin, JC and Meijering, E (2014) Objective comparison of particle tracking methods. Nature Methods 11, 281289.CrossRefGoogle ScholarPubMed
Chiang, Y-M, Chang, S-L, Oakley, BR and Wang, CCC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Current Opinion in Chemical Biology 15, 137143.CrossRefGoogle ScholarPubMed
Chung, I, Akita, R, Vandlen, R, Toomre, D, Schlessinger, J and Mellman, I (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783787.CrossRefGoogle ScholarPubMed
Day, RN, Periasamy, A and Schaufele, F (2001) Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods (San Diego, Calif.) 25, 418.CrossRefGoogle ScholarPubMed
Edelstein, AD, Tsuchida, MA, Amodaj, N, Pinkard, H, Vale, RD and Stuurman, N (2014) Advanced methods of microscope control using Manager software. Journal of Biological Methods 1, 10.CrossRefGoogle Scholar
El-Meshri, SE, Dujardin, D, Godet, J, Richert, L, Boudier, C, Darlix, JL, Didier, P, Mély, Y and de Rocquigny, H (2015) Role of the nucleocapsid domain in HIV-1 gag oligomerization and trafficking to the plasma membrane: a fluorescence lifetime imaging microscopy investigation. Journal of Molecular Biology 427, 14801494.CrossRefGoogle ScholarPubMed
Finking, R and Marahiel, MA (2004) Biosynthesis of nonribosomal peptides 1. Annual Review of Microbiology 58, 453488.CrossRefGoogle Scholar
French, JB, Jones, SA, Deng, H, Pedley, AM, Kim, D, Chan, CY, Hu, H, Pugh, RJ, Zhao, H, Zhang, Y, Huang, TJ, Fang, Y, Zhuang, X, Benkovic, SJ (2016) Spatial colocalization and functional link of purinosomes with mitochondria. Science (New York, N.Y.) 351, 733737.CrossRefGoogle ScholarPubMed
Gasser, V, Guillon, L, Cunrath, O and Schalk, IJ (2015) Cellular organization of siderophore biosynthesis in Pseudomonas aeruginosa: evidence for siderosomes. Journal of Inorganic Biochemistry 148, 2734.CrossRefGoogle ScholarPubMed
Gasser, V, Baco, E, Cunrath, O, August, PS, Perraud, Q, Zill, N, Schleberger, C, Schmidt, A, Paulen, A, Bumann, D, Mislin, GL, Schalk, IJ (2016) Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in Pseudomonas aeruginosa: an opportunity for siderophore-antibiotic conjugates development. Environmental Microbiology 18(3), 819832. https://doi.org/10.1111/1462-2920.13199.CrossRefGoogle ScholarPubMed
Ge, L and Seah, SYK. 2006. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa. Journal of Bacteriology 188, 72057210.CrossRefGoogle ScholarPubMed
Georges, C and Meyer, JM (1995) High-molecular-mass, iron-repressed cytoplasmic proteins in fluorescent pseudomonas: potential peptide-synthetases for pyoverdine biosynthesis. FEMS Microbiology Letters 132, 915.CrossRefGoogle ScholarPubMed
Godet, J and Mely, Y (2019) Exploring protein-protein interactions with large differences in protein expression levels using FLIM-FRET. Methods and Applications in Fluorescence 8(1), 014007. https://doi.org/10.1088/2050-6120/ab5dd2.CrossRefGoogle ScholarPubMed
Guillon, L, Mecherki, ME, Altenburger, S, Graumann, PL and Schalk, IJ (2012) High cellular organization of pyoverdine biosynthesis in Pseudomonas aeruginosa: clustering of PvdA at the old cell pole. Environmental Microbiology 14, 19821994.CrossRefGoogle ScholarPubMed
Gulick, AM (2017) Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. Natural Product Reports 34, 9811009.CrossRefGoogle ScholarPubMed
Ikai, H and Yamamoto, S (1997) Identification and analysis of a gene encoding L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii. Journal of Bacteriology 179 : 51185125.CrossRefGoogle ScholarPubMed
Imperi, F and Visca, P (2013) Subcellular localization of the pyoverdine biogenesis machinery of Pseudomonas aeruginosa: a membrane-associated ‘siderosome’. FEBS Letters 587, 33873391.CrossRefGoogle Scholar
Jaqaman, K, Loerke, D, Mettlen, M, Kuwata, H, Grinstein, S, Schmid, SL and Danuser, G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nature Methods 5, 695702.CrossRefGoogle ScholarPubMed
Kalwarczyk, T, Tabaka, M and Holyst, R (2012) Biologistics—diffusion coefficients for complete proteome of Escherichia coli. Bioinformatics (Oxford, England) 28, 29712978.CrossRefGoogle ScholarPubMed
Kilz, S, Lenz, C, Fuchs, R and Budzikiewicz, H (1999) A fast screening method for the identification of siderophores from fluorescent Pseudomonas spp. by liquid chromatography/electrospray mass spectrometry. Journal of Mass Spectrometry 34, 281290.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Lamont, IL and Martin, LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology (Reading, England) 149, 833842.CrossRefGoogle ScholarPubMed
Lehoux, DE, Sanschagrin, F and Levesque, RC (2000) Genomics of the 35-Kb Pvd locus and analysis of novel PvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Microbiology Letters 190, 141146.CrossRefGoogle ScholarPubMed
Manley, S, Gillette, JM, Patterson, GH, Shroff, H, Hess, HF, Betzig, E and Lippincott-Schwartz, J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods 5, 155157.CrossRefGoogle ScholarPubMed
Marahiel, MA, Stachelhaus, T and Mootz, HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chemical Reviews 97, 26512674.CrossRefGoogle ScholarPubMed
McMorran, BJ, Shanta Kumara, HM, Sullivan, K and Lamont, IL (2001) Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology (Reading, England) 147, 15171524.CrossRefGoogle ScholarPubMed
Meneely, KM, Barr, EW, Martin Bollinger, J and Lamb, AL (2009) Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction. Biochemistry 48, 43714376.CrossRefGoogle Scholar
Meyer, JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archives of Microbiology 174, 135142.CrossRefGoogle ScholarPubMed
Meyer, P, Cecchi, G and Stolovitzky, G (2014) Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria. BMC Systems Biology 8, 131.CrossRefGoogle ScholarPubMed
Mossialos, D, Ochsner, U, Baysse, C, Chablain, P, Pirnay, J-P, Koedam, N, Budzikiewicz, H, Fernández, DU, Schäfer, M, Ravel, J, Cornelis, P (2002) Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Molecular Microbiology 45, 16731685.CrossRefGoogle ScholarPubMed
Narayanaswamy, R, Levy, M, Tsechansky, M, Stovall, GM, O'Connell, JD, Mirrielees, J, Ellington, AD and Marcotte, EM (2009) Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America 106, 1014710152.CrossRefGoogle ScholarPubMed
Ravel, J and Cornelis, P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends in Microbiology 11, 195200.CrossRefGoogle ScholarPubMed
Schmitt, DL and An, S (2017) Spatial organization of metabolic enzyme complexes in cells. Biochemistry 56, 31843196.CrossRefGoogle ScholarPubMed
Sengupta, P and Lippincott-Schwartz, J (2012) Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair-correlation analysis. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 34, 396405.CrossRefGoogle ScholarPubMed
Strieker, M, Tanović, A and Marahiel, MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Current Opinion in Structural Biology 20, 234240.CrossRefGoogle ScholarPubMed
Tinevez, J-Y, Perry, N, Schindelin, J, Hoopes, GM, Reynolds, GD, Laplantine, E, Bednarek, SY, Shorte, SL and Eliceiri, KW (2017) Trackmate: an open and extensible platform for single-particle tracking. Methods (San Diego, Calif.) 115, 8090.CrossRefGoogle ScholarPubMed
Visca, P, Ciervo, A and Orsi, N (1994) Cloning and nucleotide sequence of the PvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa. Journal of Bacteriology 176, 11281140.CrossRefGoogle ScholarPubMed
Viterbi, A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13, 260269.CrossRefGoogle Scholar
Voisard, C, Bull, CT, Keel, C, Laville, J, Maurhofer, M, Schnider, U, Dfago, G and Haas, D (1994) Biocontrol of root diseases by pseudomonas fluorescens CHA0: current concepts and experimental approaches. In O’Gara, F, Dowling, DN and Boesten, B (eds), Molecular Ecology of Rhizosphere Microorganisms. Weinheim, Germany: Wiley-VCH Verlag GmbH, Book, pp. 6789.CrossRefGoogle Scholar
Weimann, L, Ganzinger, KA, McColl, J, Irvine, KL, Davis, SJ, Gay, NJ, Bryant, CE and Klenerman, D (2013) A quantitative comparison of single-dye tracking analysis tools using Monte Carlo simulations. PloS One 8, e64287.CrossRefGoogle ScholarPubMed
Ye, RW, Haas, D, Ka, JO, Krishnapillai, V, Zimmermann, A, Baird, C and Tiedje, JM (1995) Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. Journal of Bacteriology 177, 36063609.CrossRefGoogle ScholarPubMed
Yeterian, E, Martin, LW, Guillon, L, Journet, L, Lamont, IL and Schalk, IJ (2010) Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38, 14471459.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Gasser et al. supplementary material

Gasser et al. supplementary material

Download Gasser et al. supplementary material(PDF)
PDF 614.3 KB