Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T12:54:49.882Z Has data issue: false hasContentIssue false

Spatially-controlled illumination microscopy

For prolonged live-cell and live-tissue imaging with extended dynamic range

Published online by Cambridge University Press:  12 December 2016

Venkataraman Krishnaswami
Affiliation:
Core Facility Cellular Imaging, van Leeuwenhoek Centre for Advanced Microscopy (LCAM), Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands van Leeuwenhoek Centre for Advanced Microscopy (LCAM), Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
Cornelis J. F. Van Noorden
Affiliation:
Core Facility Cellular Imaging, van Leeuwenhoek Centre for Advanced Microscopy (LCAM), Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
Erik M. M. Manders
Affiliation:
van Leeuwenhoek Centre for Advanced Microscopy (LCAM), Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
Ron A. Hoebe*
Affiliation:
Core Facility Cellular Imaging, van Leeuwenhoek Centre for Advanced Microscopy (LCAM), Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
*
*Author for correspondence: Ron A. Hoebe, Core Facility Cellular Imaging, van Leeuwenhoek Centre for Advanced Microscopy (LCAM), Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands. Tel.: 3156664743; Email: r.a.hoebe@amc.uva.nl

Abstract

Live-cell and live-tissue imaging using fluorescence optical microscopes presents an inherent trade-off between image quality and photodamage. Spatially-controlled illumination microscopy (SCIM) aims to strike the right balance between obtaining good image quality and minimizing the risk of photodamage. In traditional imaging, illumination is performed with a spatially-uniform light dose resulting in spatially-variable detected signals. SCIM adopts an alternative imaging approach where illumination is performed with a spatially-variable light dose resulting in spatially-uniform detected signals. The actual image information of the biological specimen in SCIM is predominantly encoded in the illumination profile. SCIM uses real-time spatial control of illumination in the imaging of fluorescent biological specimens. This alternative imaging paradigm reduces the overall illumination light dose during imaging, which facilitates prolonged imaging of live biological specimens by minimizing photodamage without compromising image quality. Additionally, the dynamic range of a SCIM image is no longer limited by the dynamic range of the detector (or camera), since it employs a uniform detection strategy. The large dynamic range of SCIM is predominantly determined by the illumination profile, and is advantageous for imaging both live and fixed biological specimens. In the present review, the concept and working mechanisms of SCIM are discussed, together with its application in various types of optical microscopes.

Type
Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, A., Brauers, J., Kaftan, J. N., Meyer-Ebrecht, D., Böcking, A. & Aach, T. (2009). High dynamic range microscopy for cytopathological cancer diagnosis. IEEE Journal of Selected Topics in Signal Processing 3, 170184.Google Scholar
Bernas, T., Zarebski, M., Cook, R. R. & Dobrucki, J. W. (2004). Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. Journal of Microscopy 215, 281296.Google Scholar
Brakenhoff, G. J., Blom, P. & Barends, P. (1979). Confocal scanning light microscopy with high aperture immersion lenses. Journal of Microscopy 117, 219232.CrossRefGoogle Scholar
Caarls, W., Rieger, B., De Vries, A. H. B., Ardnt-Jovin, D. J. & Jovin, T. M. (2011). Minimizing light exposure with the programmable array microscope. Journal of Microscopy 241, 101110.Google Scholar
Carlton, P. M., Boulanger, J., Kervrann, C., Sibarita, J. B., Salamero, J., Gordon-Messer, S., Bressan, D., Haber, J. E., Haase, S., Shao, L. & Winoto, L. (2010). Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proceedings of the National Academy of Sciences of the United States of America 107, 1601616022.Google Scholar
Chakrova, N., Canton, A. S., Danelon, C., Stallinga, S., & Rieger, B. (2016a). Adaptive illumination reduces photobleaching in structured illumination microscopy. Biomedical Optics Express 7, 42634274.Google Scholar
Chakrova, N., Heintzmann, R., Rieger, B., & Stallinga, S. (2015). Studying different illumination patterns for resolution improvement in fluorescence microscopy. Optics Express 23, 3136731383.Google Scholar
Chakrova, N., Rieger, B., & Stallinga, S. (2016b). Deconvolution methods for structured illumination microscopy. JOSA A 33, B12B20.Google Scholar
Chen, B. C., Legant, W. R., Wang, K., Shao, L., Milkie, D. E., Davidson, M. W., Janetopoulos, C., Wu, X. S., Hammer, J. A., Liu, Z., English, B. P., Mimori-Kiyosue, Y., Romero, D. P., Ritter, A. T., Lippincott-Schwartz, J., Fritz-Laylin, L., Mullins, D. R., Mitchell, D. M., Bebenek, J. N., Reymann, A., Böhme, R., Grill, S. W., Wang, J. T., Seydous, G., Tulu, U. S., Kiehart, D. P. & Betzig, E. (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998.CrossRefGoogle ScholarPubMed
Chu, K. K., Lim, D. & Mertz, J. (2007). Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination. Optics Letters 32, 28462848.Google Scholar
Chu, K. K., Lim, D. & Mertz, J. (2010). Practical implementation of log-scale active illumination microscopy. Biomedical Optics Express 1, 236245.Google Scholar
Chuang, C. H., Carpenter, A. E., Fuchsova, B., Johnson, T., De Lanerolle, P. & Belmont, A. S. (2006). Long-range directional movement of an interphase chromosome site. Current Biology 16, 825831.CrossRefGoogle ScholarPubMed
Croix, C., Shand, S. & Watkins, S. (2005). Confocal microscopy; comparisons, applications and problems. Biotechniques 39 (Supplement, S2–S5).CrossRefGoogle Scholar
Daetwyler, S., & Huisken, J. (2016). Fast fluorescence microscopy with light sheets. Biological Bulletin 231, 1425.CrossRefGoogle ScholarPubMed
De Vos, W. H., Hoebe, R. A., Joss, G. H., Haffmans, W., Baatout, S., Van Oostveldt, P. & Manders, E. M. (2009). Controlled light exposure microscopy reveals dynamic telomere microterritories throughout the cell cycle. Cytometry Part A 75, 428439.CrossRefGoogle ScholarPubMed
De Vos, W. H., Houben, F., Hoebe, R. A., Hennekam, R., Van Engelen, B., Manders, E. M. M., Ramaekers, F. C. S., Broers, J. L. V. & Van Oostveldt, P. (2010). Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A-type lamins. Biochimica Biophysica Acta 1800, 448458.Google Scholar
Dixit, R. & Cyr, R. (2003). Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant Journal 36, 280290.CrossRefGoogle ScholarPubMed
Editorial (2013). Artifacts of light. Nature Methods 10, 1135.Google Scholar
Eggeling, C., Willig, K. I., Sahl, S. J. & Hell, S. W. (2015). Lens-based fluorescence nanoscopy. Quarterly Reviews of Biophysics 48, 178243.Google Scholar
Ettinger, A. & Wittmann, T. (2014). Fluorescence live cell imaging. Methods Cell Biology 123, 7794.Google Scholar
Fahrbach, F. O., Simon, P., & Rohrbach, A. (2010). Microscopy with self-reconstructing beams. Nature Photonics 4, 780785.CrossRefGoogle Scholar
Fahrbach, F. O. & Rohrbach, A. (2012). Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nature Communications 3, 632.Google Scholar
Fu, Q., Martin, B. L., Matus, D. Q., & Gao, L. (2016). Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nature Communications 7, 11088.Google Scholar
Gao, L. (2015). Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet. Optics Express 23, 61026111.CrossRefGoogle ScholarPubMed
Grzelak, A., Rychlik, B. & Bartosz, G. (2001). Light-dependent generation of reactive oxygen species in cell culture media. Free Radical Biology Medicine 30, 14181425.CrossRefGoogle ScholarPubMed
Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198, 8287.CrossRefGoogle ScholarPubMed
Gustafsson, M. G., Shao, L., Carlton, P. M., Wang, C. R., Golubovskaya, I. N., Cande, W. Z., Agard, D. A. & Sedat, J. W. (2008). Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophysical Journal 94, 49574970.Google Scholar
Hanley, Q. S., Verveer, P. J., Gemkow, M. J., Arndt-Jovin, D. & Jovin, T. M. (1999). An optical sectioning programmable array microscope implemented with a digital micromirror device. Journal of Microscopy 196, 317331.CrossRefGoogle ScholarPubMed
Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L. & Magee, J. C. (2012). Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491, 599602.CrossRefGoogle ScholarPubMed
Heintzmann, R. (2003). Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34, 283291.Google Scholar
Heintzmann, R., Hanley, Q. S., Arndt-Jovin, D. & Jovin, T. M. (2001). A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images. Journal of Microscopy 204, 119135.CrossRefGoogle ScholarPubMed
Hell, S. W. & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19, 780782.Google Scholar
Helmchen, F. & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods 2, 932940.CrossRefGoogle ScholarPubMed
Hoebe, R. A. (2010). Controlled light exposure microscopy. PhD thesis, University of Amsterdam, Amsterdam, The Netherlands.Google Scholar
Hoebe, R. A., Van Noorden, C. J. F. & Manders, E. M. M. (2010). Noise effects and filtering in controlled light exposure microscopy. Journal of Microscopy 240, 197206.Google Scholar
Hoebe, R. A., Van Oven, C. H., Gadella, T. W., Dhonukshe, P. B., Van Noorden, C. J. F. & Manders, E. M. M. (2007). Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nature Biotechnology 25, 249253.Google Scholar
Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. (2004). Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 10071009.Google Scholar
Ji, N., Shroff, H., Zhong, H. & Betzig, E. (2008). Advances in the speed and resolution of light microscopy. Current Opinion in Neurobiology 18, 605616.CrossRefGoogle ScholarPubMed
Keller, P. J., Schmidt, A. D., Wittbrodt, J., & Stelzer, E. H. (2008). Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 10651069.Google Scholar
Khodjakov, A. & Rieder, C. L. (2006). Imaging the division process in living tissue culture cells. Methods 38, 216.Google Scholar
Krishnaswami, V., Van Noorden, C. J., Manders, E. M. & Hoebe, R. A. (2014). Towards digital photon counting cameras for single-molecule optical nanoscopy. Optical Nanoscopy 3, 1.Google Scholar
Magidson, V. & Khodjakov, A. (2013). Circumventing photodamage in live-cell microscopy. Methods in Cell Biology 114, 545560.Google Scholar
Marx, V. (2015). Probes: paths to photostability. Nature Methods 12, 187190.Google Scholar
Mikhailov, A., Shinohara, M. & Rieder, C. L. (2005). The p38-mediated stress-activated checkpoint: a rapid response system for delaying progression through antephase and entry into mitosis. Cell Cycle 4, 5762.CrossRefGoogle ScholarPubMed
Planchon, T. A., Gao, L., Milkie, D. E., Davidson, M. W., Galbraith, J. A., Galbraith, C. G. & Betzig, E. (2011). Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nature Methods 8, 417423.Google Scholar
Schilling, Z., Frank, E., Magidson, V., Wason, J., Lončarek, J., Boyer, K., Wen, J. & Khodjakov, A. (2012). Predictive-focus illumination for reducing photodamage in live-cell microscopy. Journal of Microscopy 246, 160167.Google Scholar
Staudt, T., Engler, A., Rittweger, E., Harke, B., Engelhardt, J. & Hell, S. W. (2011). Far-field optical nanoscopy with reduced number of state transition cycles. Optics Express 19, 56445657.Google Scholar
Stelzer, E. H. (2015). Light-sheet fluorescence microscopy for quantitative biology. Nature Methods 12, 2326.Google Scholar
Stephens, D. J. & Allan, V. J. (2003). Light microscopy techniques for live cell imaging. Science 300, 8286.Google Scholar
Uetake, Y., Lončarek, J., Nordberg, J. J., English, C. N., La Terra, S., Khodjakov, A., & Sluder, G. (2007). Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. Journal of Cell Biology 176, 173182.Google Scholar
Vettenburg, T., Dalgarno, H. I., Nylk, J., Coll-Lladó, C., Ferrier, D. E., Čižmár, T., Gunn-Moore, F. J. & Dholakia, K. (2014). Light-sheet microscopy using an Airy beam. Nature Methods 11, 541544.Google Scholar
Verveer, P. J., Hanley, Q.S., Verbeek, P.W., Van Vliet, L.J. & Jovin, W.M. (1998). Theory of confocal fluorescence imaging in the programmable array microscope (PAM). Journal of Microscopy 189, 192198.CrossRefGoogle Scholar
Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. (1998). Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Current Biology 8, 1227.Google Scholar
Williams, E. S., Stap, J., Essers, J., Ponnaiya, B., Luijsterburg, M. S., Krawczyk, P. M., Ullrich, R. L., Aten, J. A. & Bailey, S. M. (2007). DNA double-strand breaks are not sufficient to initiate recruitment of TRF2. Nature Genetics 39, 696698.Google Scholar