Hostname: page-component-6b989bf9dc-cvxtj Total loading time: 0 Render date: 2024-04-15T03:58:33.038Z Has data issue: false hasContentIssue false

U/Th and 14C Crossdating of Parietal Calcite Deposits: Application to Nerja Cave (Andalusia, Spain) and Future Perspectives

Published online by Cambridge University Press:  28 December 2017

Hélène Valladas*
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Bâtiment 12, avenue de la terrasse, 91198 Gif Sur Yvette Cedex, France
Edwige Pons-Branchu
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Bâtiment 12, avenue de la terrasse, 91198 Gif Sur Yvette Cedex, France
Jean Pascal Dumoulin
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
Anita Quiles
Institut Français d’Archéologie Orientale, Pôle archéométrie, 37 rue al-Cheikh Aly Youssef, B.P. Qasr el-Ayni, 11652, 11441 Le Caire, Egypt
José L Sanchidrián
University of Cordoba UCO, Geography and Territory Sciences, Cardenal Salazar s/n, 14071 Cordoba, Spain
Maria Ángeles Medina-Alcaide
University of the Basque Country UPV/EHU, Geography, Prehistory and Archaeology, Tomás y Valiente s/n, 01006 Vitoria-Gasteiz, Spain
*Corresponding author. Email:


14C and U/Th methods were used to date three thin carbonate layers deposited on decorated walls of Nerja Cave (Malaga, southern Spain) in order to constrain the age of the parietal non-figurative marks situated under these carbonate layers. Modern formations were also dated to estimate the detritic contribution for the U/Th method and the dead carbon proportion for 14C dating. We sampled two locations with ocher painting marks. In one case (mark 1), the good agreement between the ages obtained by the two methods suggests that the sample was not subjected to post-deposition alteration and that the results are reliable. In the other case (mark 2), the age discrepancy between the two methods reached 30,000 yr, indicating that geochemical alteration had affected the sample and that one or both results were inaccurate. The ages for mark 1 indicate that this type of non-figurative representation is older than 25,000 cal BP and that it can be associated with the oldest attested Paleolithic occupation of Nerja Cave.

Method Development
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016



Aubert, M, O’Connor, S, McCulloch, M, Mortimer, G, Watchman, A, Richer-La-Fleche, M. 2007. Uranium-series dating rock art in East Timor. Journal of Archaeological Science 34:991996.CrossRefGoogle Scholar
Aubert, M, Brumm, A, Ramli, M, Sutikna, T, Saptomo, EW, Hakim, B, Morwood, MJ, van den Bergh, GD, Kinsley, L, Dosseto, A. 2014. Pleistocene cave art from Sulawesi, Indonesia. Nature 514:223227.CrossRefGoogle ScholarPubMed
Baker, A, Smart, PL, Edwards, RL, Richards, DA. 1993. Annual growth banding in a cave stalagmite. Nature 364(6437):518520.CrossRefGoogle Scholar
Bar-Matthews, M, Ayalon, A, Gilmour, M, Matthews, A, Hawkesworth, CJ. 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67(17):31813199.CrossRefGoogle Scholar
Bischoff, J, García-Diez, M, González Morales, MR, Sharp, W. 2003. Aplicación del método de series de Uranio al grafismo rupestre de estilo paleolítico : el caso de la cavidad de Covalanas (Ramales de la Victoria, Cantabria). Veleia 20:143150.Google Scholar
Borsato, A, Quinif, Y, Bini, A, Dublyansky, Y. 2003. Open-system alpine speleothems: implications for U-series dating and paleoclimate reconstructions, Studi Trentini di Scienze Naturali, Acta Geologica 80:7183.Google Scholar
Bruthans, J, Schweigstillova, J, Jenč, P, Churáčková, Z, Bezdička, P. 2012. 14C and U-series dating of speleothems in the Bohemian Paradise (Czech Republic): retreat rates of sandstone cave walls and implications for cave origin. Acta Geodyn. Geomater 9(1):93108.Google Scholar
Cheng, H, Edwards, RL, Shen, CC, Polyak, VJ, Asmerom, Y, Woodhead, J, Hellstrom, J, Wang, Y, Kong, X, Spötl, C, Wang, X. 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371:8291.CrossRefGoogle Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Salomon, J. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291299.CrossRefGoogle Scholar
Domínguez-Villar, D, Carrasco, RM, Pedraza, J, Cheng, H, Edwards, RL, Willenbring, JK. 2013. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Scientific Reports 3.CrossRefGoogle Scholar
Clottes, J. 2012. Datations U-Th, évolution de l’art et Néandertal. International Newsletter on Rock Art 64:16.Google Scholar
Edwards, R, Cheng, H, Murrell, MT, Goldstein, SJ. 1997. Protactinium-231 dating of carbonates by thermal ionization mass spectrometry: implications for Quaternary climate change. Science 276(5313):782786.CrossRefGoogle ScholarPubMed
Fleitmann, D, Matte, A. 2009. The speleothem record of climate variability in Southern Arabia. Comptes Rendus Geoscience 341(8):633642.CrossRefGoogle Scholar
Fontugne, M, Shao, Q, Frank, N, Thil, F, Guidon, N, Boeda, E. 2013. Cross-dating (Th/U-14C) of calcite covering prehistoric paintings at Serra da Capivara National Park, Piaui, Brazil. Radiocarbon 55(2–3):11911198.CrossRefGoogle Scholar
Gascoyne, M, Nelson, DE. 1983. Growth mechanisms of recent speleothems from Castleguard Cave, Columbia Icefields, Alberta, Canada, inferred from a comparison of uranium-series and carbon-14 age data. Arctic and Alpine Research 15(4):537542.CrossRefGoogle Scholar
Genty, D, Baker, A, Massault, M, Proctor, C, Pons-Branchu, E, Hamelin, B. 2001. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta 65(20):34433457.CrossRefGoogle Scholar
Gordon, D, Smart, PL, Ford, DC, Andrews, JN, Atkinson, TC, Rowe, PJ, Christopher, NS. 1989. Dating of late Pleistocene interglacial and interstadial periods in the United Kingdom from speleothem growth frequency. Quaternary Research 31(1):1426.CrossRefGoogle Scholar
Goslar, T, Hercman, H, Pazdur, A. 2000. Comparison of U-series and radiocarbon dates of speleothems. Radiocarbon 42(3):403414.CrossRefGoogle Scholar
Griffiths, M L, Fohlmeister, J, Drysdale, RN, Hua, Q, Johnson, K R, Hellstrom, JC, Gagan, MK, Zhao, JX. 2012. Hydrological control of the dead carbon fraction in a Holocene tropical speleothem. Quaternary Geochronology 14:8193.CrossRefGoogle Scholar
Hoffmann, DL, Pike, AWG, García-Diez, M, Pettitt, P B, Zilhao, J. 2016. Methods for U-series dating of CaCO3 crusts associated with Palaeolithic cave art and application to Iberian sites. Quaternary Geochronology 36:104119.CrossRefGoogle Scholar
Holmgren, K, Lauritzen, SE, Possnert, G. 1994. 230Th234U and 14C dating of a late Pleistocene stalagmite in Lobatse II Cave, Botswana. Quaternary Science Reviews 13(2):111119.CrossRefGoogle Scholar
Jordá, JF, Aura, JE. 2008. 70 fechas para una cueva. Revisión crítica de 70 dataciones C14 del Pleistoceno Superior y Holoceno de la Cueva de Nerja (Málaga, Andalucía, España). Espacio, Tiempo y Forma I(1):239256.Google Scholar
Jordá, JF, Aura, E. 2009. El límite Pleistoceno-Holoceno en el yacimiento arqueológico de la Cueva de Nerja (Málaga, España): nuevas aportaciones cronoestratigráficas y paleoclimáticas. Geogaceta 46:9598.Google Scholar
Kaufman, A, Wasserburg, G J, Porcelli, D, Bar-Matthews, M, Ayalon, A, Halicz, L. 1998. U-Th isotope systematics from the Soreq cave, Israel and climatic correlations. Earth and Planetary Science Letters 156(3):141155.CrossRefGoogle Scholar
Medina-Alcaide, MA, Sanchidrián, JL. 2014. Hacia el lado oscuro: cueva de Nerja a la luz de los nuevos datos. In: Corchón MS, Menéndez M, editors. Cien años de arte rupestre paleolítico. Salamanca: Universidad de Salamanca. p 133141.Google Scholar
Medina-Alcaide, MA, Sanchidrián, J L, Zapata, L. 2015. Lighting the dark: wood charcoal analysis from Cueva de Nerja (Málaga, Spain) as a tool to explore the context of Palaeolithic rock art. Comptes Rendus Palevol 14(5):411422.CrossRefGoogle Scholar
Medina-Alcaide, MA, Garate, DY, Sanchidrián, JL. 2017. Painted in red: In search of alternative explanations for European Palaeolithic cave art. Quaternary International. Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.CrossRefGoogle Scholar
Moreno, A, Stoll, H, Jiménez-Sánchez, M, Cacho, I, Valero-Garcés, B, Ito, E, Edwards, RL. 2010. A speleothem record of glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change 71(3):218231.CrossRefGoogle Scholar
Noronha, AL, Johnson, KR, Hu, C, Ruan, J, Southon, JR, Ferguson, JE. 2014. Assessing influences on speleothem dead carbon variability over the Holocene: implications for speleothem-based radiocarbon calibration. Earth and Planetary Science Letters 394:2029.CrossRefGoogle Scholar
Pike, AWG, Gilmour, M, Pettitt, P, Jacobi, R, Ripoll, S, Bahn, P, Muñoz, F. 2005. Verification of the age of the Palaeolithic rock art at Creswell. Journal of Archaeological Science 32(11):16491655.CrossRefGoogle Scholar
Pike, AWG, Hoffmann, DL, García-Diez, M, Pettitt, PB, Alcolea, J, De Balbín, R, González-Sainz, C, de las Heras, C, Lasheras, JA, Montes, R, Zilhão, J. 2012. U-series dating of Paleolithic Art in 11 Caves in Spain. Science 336:14091413. (Supplementary materials: CrossRefGoogle ScholarPubMed
Plagnes, V, Causse, C, Fontugne, M, Valladas, H, Chazine, JM, Fage, LH. 2003. Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo. Quaternary Research 60(2):172179.CrossRefGoogle Scholar
Pons-Branchu, E, Bourrillon, R, Conkey, M, Fontugne, M, Fritz, C, Gárate, D., Quiles, A., Rivero, O, Sauvet, G, Tosello, G, Valladas, H, White, R. 2014a. Uranium-series dating of carbonate formations overlying Paleolithic art: interest and limitations. Bulletin de la Société préhistorique française 111(2):211224.Google Scholar
Pons-Branchu, E, Douville, E, Roy-Barman Dumont, E, Branchu, E, Thil, F, Frank, N, Bordier, L, Borst, W. 2014b. A geochemical perspective on Parisian urban history based on U-Th dating, laminae counting and yttrium and REE concentrations of recent carbonates in underground aqueducts. Quaternary Geochronology 24:4453.CrossRefGoogle Scholar
Pons-Branchu, E, Hamelin, B, Losson, B, Jaillet, S, Brulhet, J. 2010. Speleothem evidence of warm episodes in northeast France during Marine Oxygen Isotope Stage 3 and implications for permafrost distribution in northern Europe. Quaternary Research 74(2):246251.CrossRefGoogle Scholar
Pons-Branchu, E, Hillaire-Marcel, C, Ghaleb, B, Deschamps, P, Sinclair, D. 2005. Early diagenesis impact on precise U-series dating of Deep-Sea corals. Example of a 100--200 years old Lophelia Pertusa sample from NE Atlantic. Geochimica et Cosmochimica Acta 69(20):48654879.CrossRefGoogle Scholar
Quiles, A, Fritz, C, Medina, MA, Pons-Branchu, E, Sanchidrián, JL, Tosello, G, Valladas, H. 2014. Chronologies croisées (C-14 et U/Th) pour l’étude de l’art préhistorique dans la grotte de Nerja: méthodologie. In: Medina-Alcaide et al., editors. Sobre Rocas y Huesos. Córdoba. ISBN: 978-84- 617-2993. p 420–427.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, W, Blackwell, P, Bronk, C, Buck, C, Cheng, H, Edwards, L, Friedrich, M, Grootes, , Guilderson, T, Haflidason, H, Hajdas, I, Hatté, C, Heaton, T, Hoffmann, D, Hogg, A, Hughen, K, Kaiser, F, Kromer, B, Manning, S, Niu, M, Reimer, R, Richards, D, Scott, M, Southon, J, Staff, R, Turney, C, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Roy-Barman, M, Pons-Branchu, E. 2016. Improved U–Th dating of carbonates with high initial 230 Th using stratigraphical and coevality constraints. Quaternary Geochronology 32:2939.CrossRefGoogle Scholar
Sanchidrián, JL. 1994. Arte Rupestre de la Cueva de Nerja. Málaga: Patronato de la Cueva de Nerja: 332 p.Google Scholar
Sanchidrián, JL. 1994. Arte paleolítico de la zona meridional de la Península Ibérica. Complutum 5:163195.Google Scholar
Sanchidrián, JL. 1997. Propuesta de la secuencia figurativa en la cueva de La Pileta. In: Fullola M, Soler N, editors. El món mediterrani desprès del Pleniglacial (18.000-12.000 BP). Gerona. p 411430.Google Scholar
Sanchidrián, J, Márquez, AM, Valladas, H, Tisnerat, N. 2001. Dates directes pour l’art rupestre d’Andalousie (Espagne). International Newsletter on Rock Art 29:1519.Google Scholar
Sanchidrián, JL, Valladas, H, Medina-Alcaide, , Pons-Branchu, E, Quiles, A. 2017. New perspectives for 14C dating of parietal markings using CaCO3 thin layers: an example in Nerja cave (Spain). Journal of Archaeological Science Reports 12:7480.CrossRefGoogle Scholar
Shao, QF, Pons-Branchu, E, Zhu, QP, Wang, W, Valladas, H, Fontugne, M. 2017. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China. Quaternary Research 88(1):113.CrossRefGoogle Scholar
Siddall, M, Rohling, EJ, Thompson, WG, Waelbroeck, C. 2008. Marine isotope stage 3 sea level fluctuations: data synthesis and new outlook. Reviews of Geophysics 46(4):RG4003.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Poupeau, JJ, Tannau, JF, Paterne, M. 2001. Development of a semi-automated system for routine preparation of carbonate samples. Radiocarbon 43(2A):299304.CrossRefGoogle Scholar
Tuccimei, P, van Strydonck, M, Ginés, A, Soligo, M, Villa, IM, Fornós, JJ. 2011. Comparison of 14C and U-Th ages of two Holocene phreatic overgrowths on speleothems from Mallorca (Western Mediterranean): environmental implications. International Journal of Speleology 40(1):1.CrossRefGoogle Scholar