Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T14:08:37.681Z Has data issue: false hasContentIssue false

AMS, HISTORICAL, AND ARCHAEOLOGICAL DATING OF OPONICE CASTLE

Published online by Cambridge University Press:  08 August 2023

Barbora Styková*
Affiliation:
CRL, Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, CZ-180 86 Praha, Czech Republic
Matej Styk
Affiliation:
CRL, Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, CZ-180 86 Praha, Czech Republic Department of Archaeology, Constantine the Philosopher University in Nitra, Hodzova 1, SK-949 01 Nitra, Slovak Republic
Dominik Repka
Affiliation:
Department of Archaeology, Constantine the Philosopher University in Nitra, Hodzova 1, SK-949 01 Nitra, Slovak Republic
Ivo Světlík
Affiliation:
CRL, Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, CZ-180 86 Praha, Czech Republic
Kateřina Pachnerová Brabcová
Affiliation:
CRL, Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, CZ-180 86 Praha, Czech Republic
Markéta Petrová
Affiliation:
CRL, Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, CZ-180 86 Praha, Czech Republic Faculty of Nuclear Sciences and Physicsl Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha, Czech Republic
Mária Hajnalová
Affiliation:
Department of Archaeology, Constantine the Philosopher University in Nitra, Hodzova 1, SK-949 01 Nitra, Slovak Republic
*
*Corresponding author. Email: barbora.stykova@gmail.com

Abstract

The fifth season of excavations of Oponice Castle in 2020 was located in the lower castle’s courtyard. The research led to discovery of an original clay floor being heavily burned with charred plank and a rectangular stone-brick construction. The construction has collapsed upper part with a fallen low brick arch. The whole area was covered with numerous stove tiles and one clay mold for the production of stove tiles. The construction was identified as a pottery kiln dated to the second half of the 16th until the first half of the 17th century AD by the findings from excavated layer identified to the kiln destruction. Also, written sources mention a large fire in 1645 which destroyed the castle. The aim of this article is to use different methods of dating and refine the chronology of the context through microarchaeology and Bayesian modeling. For these purposes different types of samples were collected. The sampling focused on site formation process determination of pottery kiln use and the way of its destruction. Applying Bayesian analysis improved overall dating, through modeled time interval of the three individual sequences and helped recreated historical events during the period, when the calibration curve fluctuates.

Type
Conference Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Bel, M. 1742. Notitia Hungariae novae historicogeographica IV. Vienna (AUT): Tomvs Qvartvs.Google Scholar
Bóna, M, Repka, D, Sater, P. 2017. Oponický hrad. Dejiny, výskum a obnova pamiatky. Nitra (SVK): Apponiana.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Bronk Ramsey, C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59(2):18091833.CrossRefGoogle Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43(2A):381389.CrossRefGoogle Scholar
Ethey, G. 1936. A Zoborvidék multjából. Nyitra (SVK): Risnyovszky János Könyvnyomdája.Google Scholar
Gupta, SK, Polach, HA. 1985. Radiocarbon dating practises at ANU. Canberra: ANU.Google Scholar
Harris, EC. 1997. Principles of archaeological stratigraphy. 2th ed. London (GBR): Academic Press.Google Scholar
Hunfalvy, J. 1860. Magyarország és Érdely eredeti képekben. Pest.Google Scholar
Jančiová, B. 2021. Stove tiles production. Study Possibilities of stove tiles on the example of collection from Oponice Castle [dissertation]. Nitra (SVK): Constantine the Philosopher University in Nitra.Google Scholar
Janura, T, Bóna, M. 2022. Oponice Castle in the modern era from the perspective of archival and architectural-historical research. Studia Historica Nitriensia 26(2):471499.CrossRefGoogle Scholar
Jull, AJT, Burr, GS, Beck, JW, Hodgins, GWL, Biddulph, DL, Gann, J, Hatheway, AL, Lange, TE, Lifton, NA. 2006. Application of accelerator mass spectrometry to environmental and paleoclimate studies at the University of Arizona. Radioactivity in the Environment 8:323.CrossRefGoogle Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Langy, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3):665676.CrossRefGoogle Scholar
Neustupný, E. 2007. Theory of archaeology. Plzen (CZE): Aleš Čeněk.Google Scholar
Orsovszki, G, Rinyu, L. 2015. Flame-sealed tube graphitization using zinc as the sole reduction agent: precision improvement of Environ MICADAS 14C measurements on graphite targets. Radiocarbon 57(5):979990.CrossRefGoogle Scholar
Pearson, GW. 1986. Precise calendrical dating of known growth-period samples using a “curve-fitting” technique. Radiocarbon 28(2A):292299.CrossRefGoogle Scholar
Reimer, P, Austin, W, Bard, E, Bayliss, A, Blackwell, P, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, R, Friedrich, M, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Repka, D. 2015. Oponice, okres Topoľčany, Oponický hrad. Výskumná dokummentácia z archeologického výskumu. Nitra (SVK): Constantine the Philosopher University in Nitra.Google Scholar
Repka, D. 2018. Oponický hrad. Výskumná dokumentácia z archeologického výskumu. Nitra (SVK): Constantine the Philosopher University in Nitra.Google Scholar
Repka, D, Jančiová, B. 2020. Oponice, okres Topoľčany, Oponický hrad. Výskumná dokumentácia z archeologického výskumu. Nitra (SVK): Constantine the Philosopher University in Nitra.Google Scholar
Repka, D, Sater, P. 2019. Coat of arms on a stone segment from Oponice Castle—the activity of the Horváth family in the Aponi family residence. Studia Historica Nitriensia 23(1):158170.CrossRefGoogle Scholar
Repka, D, Styk, M. 2016. Oponice, okres Topoľčany, Oponický hrad. Výskumná dokumentácia z archeologického výskumu. Nitra (SVK): Constantine the Philosopher University in Nitra.Google Scholar
Repka, D, Styk, M, Šimunková, K. 2017. Oponický hrad. Výskumná dokumentácia z archeologického výskumu. Nitra (SVK): Constantine the Philosopher University in Nitra.Google Scholar
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, H-A. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.CrossRefGoogle Scholar
Rinyu, L, Orsovszki, G, Futó, I, Veres, M, Molnár, M. 2015. Application of zinc sealed tube graphitization on sub-milligram samples using Environ MICADAS. Nuclear Instruments and Methods in Physics Research Section B 361:406413.CrossRefGoogle Scholar
Schmid, MME, Wood, R, Newton, AJ. Vésteinsson, O, Dugmore, AJ. 2019. Enhancing radiocarbon chronologies of colonization: chronometric hygiene revisited. Radiocarbon 61(2):629647.CrossRefGoogle Scholar
Schneider, RJ, McNichol, AP, Nadeau, MJ, Reden, KF. 1995. Measurements of the Oxalic Acid II/Oxalic Acid I ratio as a quality control parameter at NOSAMS. Radiocarbon 37(2):693696.CrossRefGoogle Scholar
Stuiver, M, Polach, H. 1977. Reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Svetlik, I, Jull, AJT, Molnar, M, Povinec, P, Kolar, T, Demjan, O, Pachnerova Brabcova, K, Brychova, V, Dreslerova, D, Rybnicek, M, Simek, P. 2019. The best possible time resolution: How precise could a radiocarbon dating be? Radiocarbon 62(5):112.Google Scholar
Tessedik, F. 1827. Die Burgen—Appony. In: Hormayr, J, Mednyánszky, A, editors. Taschenbuch für die vaterländische Geschichte VII. Wien. p. 2854.Google Scholar