Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-21T16:22:54.188Z Has data issue: false hasContentIssue false

Algebraic tools for the construction of colored flows with boundary constraints

Published online by Cambridge University Press:  15 June 2004

Marius Dorkenoo
Affiliation:
Groupe de Recherche en Informatique et Mathématiques Appliquées, IUT Roanne (Université Jean Monnet Saint-Etienne), 20 avenue de Paris, 42334 Roanne Cedex, France; dorkenoo@univ-st-etienne.fr.; leclermc@univ-st-etienne.fr.
Marie-Christine Eglin-Leclerc
Affiliation:
Groupe de Recherche en Informatique et Mathématiques Appliquées, IUT Roanne (Université Jean Monnet Saint-Etienne), 20 avenue de Paris, 42334 Roanne Cedex, France; dorkenoo@univ-st-etienne.fr.; leclermc@univ-st-etienne.fr.
Eric Rémila
Affiliation:
Groupe de Recherche en Informatique et Mathématiques Appliquées, IUT Roanne (Université Jean Monnet Saint-Etienne), 20 avenue de Paris, 42334 Roanne Cedex, France; dorkenoo@univ-st-etienne.fr.; leclermc@univ-st-etienne.fr. Laboratoire de l'Informatique du Parallélisme, UMR 5668 CNRS-INRIA-Univ. Lyon 1-ENS Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France; Eric.Remila@ens-lyon.fr.
Get access

Abstract

We give a linear time algorithm which, given a simply connected figure of the plane divided into cells, whose boundary is crossed by some colored inputs and outputs, produces non-intersecting directed flow lines which match inputs and outputs according to the colors, in such a way that each edge of any cell is crossed by at most one line. The main tool is the notion of height function, previously introduced for tilings. It appears as an extension of the notion of potential of a flow in a planar graph.

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

T. Chaboud, Pavages et Graphes de Cayley. Ph.D. Thesis, École Normale Supérieure de Lyon (1995).
Conway, J.H. and Lagarias, J.C., Tiling with Polyominoes and Combinatorial Group Theory. J. Combin. Theory A 53 (1990) 183208. CrossRef
Hassin, R., Maximum flows in (s,t) planar networks. Inform. Proc. Lett. 13 (1981) 107. CrossRef
Hassin, R. and Johnson, D.B., An O(nlog²n) algorithm for maximum flow in undirected planar networks. SIAM J. Comput. 14 (1985) 612624. CrossRef
C. Kenyon and R. Kenyon, Tiling a polygon with rectangles. Proc. 33rd FOCS (1992) 610–619.
Kondev, J. and Henley, Ch.L., Kac-Moody symmetries of critical ground states. Nuclear Phys. B 464 (1996) 540575. CrossRef
Lagarias, J.C. and Romano, D.S., Polyomino Tiling, A of Thurston and its Configurational Entropy. J. Combin. Theory A 63 (1993) 338358. CrossRef
W. Magnus, A. Karass and D. Solitar, Combinatorial Group Theory. Dover Publications, Inc. (1976).
J. Propp, A pedestrian approach to a method of Conway, or a tale of two cities. Internal Report, Massachusetts Institute of Technology (1993).
E. Rémila, Tiling a figure using a height in a tree, in Proc. of the 7th annual ACM-SIAM Symposium On Discrete Algorithms (SODA). SIAM eds, Philadelphia (1996) 168–174.
W.P. Thurston, Conway's tiling group. Amer. Math. Monthly (1990) 757–773.