Skip to main content Accessibility help
Hostname: page-component-5959bf8d4d-9w8k4 Total loading time: 0.63 Render date: 2022-12-09T22:03:16.519Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Cognitive Performance and Morning Levels of Salivary Cortisol and α-Amylase in Children Reporting High vs. Low Daily Stress Perception

Published online by Cambridge University Press:  10 April 2014

Enrique F. Maldonado*
Universidad de Málaga, Spain
Francisco J. Fernandez
Universidad de Málaga, Spain
M. Victoria Trianes
Universidad de Málaga, Spain
Keith Wesnes
Northumbria University, UK Cognitive Drug Research (CDR) Ltd, Goring-on-Times, UK
Orlando Petrini
Pharmaton SA, Switzerland
Andrea Zangara
Northumbria University, UK
Alfredo Enguix
Hospital Virgen de la Victoria, Málaga, Spain
Lara Ambrosetti
Pharmaton SA, Switzerland
Correspondence concerning this article should be addressed to Dr. Enrique F. Maldonado, Department of Psychobiology and Methodology of the Behavioural Sciences, Universidad de Málaga, Campus Teatinos, C.P. 29071 Malaga (Spain), Phone: +34 952 133476. Fax: +34 952 132621. E-mail:


The aim of the present study was to assess the effects of daily stress perception on cognitive performance and morning basal salivary cortisol and alpha-amylase levels in healthy children aged 9–12. Participants were classified by whether they had low daily perceived stress (LPS, n = 27) or a high daily perceived stress (HPS, n = 26) using the Children Daily Stress Inventory (CDSI). Salivary cortisol and alpha-amylase were measured at awakening and 30 minutes later. Cognitive performance was assessed using the Cognitive Drug Research assessment system. The HPS group exhibited significantly poorer scores on speed of memory (p < .05) and continuity of attention (p < .05) relative to the LPS group. The HPS group also showed significantly lower morning cortisol levels at awakening and at +30 minutes measures in comparison with the LPS group (p < .05), and mean morning cortisol levels were negatively correlated with speed of memory (p < .05) in the 53 participants. No significant differences were observed between both groups in alpha-amylase levels. These findings suggest that daily perceived stress in children may impoverish cognitive performance via its modulating effects on the HPA axis activity.

El objetivo del presente estudio fue evaluar los efectos de la percepción de estrés diario sobre el rendimiento cognitivo y los niveles matutinos basales de cortisol y alfa-amilasa salivar en niños sanos de edades entre los 9 y los 12 años. Los participantes fueron clasificados en función de si su nivel de percepción de estrés diario era bajo (LPS, n = 27) o alto (HPS, n = 26), empleando el Children Daily Stress Inventory (CDSI). Se midió el cortisol y la alfa-amilasa salivar al despertar y 30 minutos más tarde. El rendimiento cognitivo se evaluó mediante el sistema de evaluación Cognitive Drug Research. El grupo HPS obtuvo puntuaciones significativamente más bajas en velocidad de memoria (p < .05) y continuidad de la atención (p < .05) con respecto al grupo LPS. El grupo HPS también mostró niveles significativamente más bajos de cortisol matutino al despertar y a los 30 minutos en comparación con el grupo LPS (p < .05), y sus niveles medios de cortisol matutino correlacionaron negativamente con la velocidad de la memoria (p < .05) en los 53 participantes. No se observaron diferencias significativas entre los grupos en los niveles de alfa-amilasa. Estos resultados sugieren que la percepción de estrés diario en niños puede disminuir su ejecución cognitiva a través de sus efectos moduladores en la actividad del eje HPA.

Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adler, N. E., Boyce, T., Chesney, M. A., Cohen, S., Folkman, S., Kahn, R. L., & Syme, S. L. (1994). Socio-economic status and health: The challenge of the gradient. American Psychologist, 49, 1524.CrossRefGoogle Scholar
Akirav, I., & Richter-Levin, G. (2002). Mechanisms of amygdala modulation of hippocampal plasticity. Journal of Neuroscience, 22, 99129921.CrossRefGoogle ScholarPubMed
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptative gain and optimal performance. Annual Review of Neuroscience, 28 403450.CrossRefGoogle Scholar
Beckwith, B.E., Petros, T.V., Scaglione, C., & Nelson, J. (1986). Dose-depend effects of hydrocortisone on memory in human males. Physiology and Behavior, 36, 283286.CrossRefGoogle Scholar
Blair, C., Granger, D., & Peters Razza, R. P. (2005). Cortisol reactivity is positively related to executive function in preschool children attending head start. Child Development, 76, 554567.CrossRefGoogle ScholarPubMed
Birch, L. L. (1998). Psychological influences on the childhood diet. Journal of Nutrition, 128, 407S410S.CrossRefGoogle ScholarPubMed
Brandtstadter, J., Baltes-Götz, B., Kirschbaum, C., & Hellhammer, D. (1991). Developmental and personality correlates of adrenocortical activity as indexed by salivary cortisol: Observations in the age range of 35 to 65 years. Journal of Psychosomatic Research, 35, 173185.CrossRefGoogle ScholarPubMed
Bremner, J. D., & Narayan, M. (1998). The effects of stress on memory and the hippocampus throughout the life cycle: Implications for childhood development and aging. Development and Psychopathology, 10, 871885.CrossRefGoogle ScholarPubMed
Bremner, J. D., & Vermetten, E. (2001). Stress and development: Behavioral and biological consequences. Development and Psychopathology, 13, 473489.CrossRefGoogle Scholar
Charmandari, E., Kino, T., Souvatzoglou, E., & Chrousos, G. P. (2003). Pediatric stress: Hormonal mediators and human development. Hormone Research, 59, 161179.CrossRefGoogle ScholarPubMed
Chatterton, R. T. Jr., Vogelsong, K. M., Lu, Y. C., Ellman, A. B., & Hudgens, G. A. (1996). Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clinical Physiology, 16, 433448.CrossRefGoogle ScholarPubMed
Chatterton, R. T. Jr., Vogelsong, K. M., Lu, Y. C., & Hudgens, G. A. (1997). Hormonal responses to psychological stress in men preparing for skydiving. Journal of Clinical Endocrinology & Metabolism, 82, 25032509.Google ScholarPubMed
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. The Journal of American Medical Association, 267, 12441252.CrossRefGoogle ScholarPubMed
Clow, A., Thorn, E., Evans, P., & Hucklebridge, F. (2004). The awakening cortisol response: methodological issues and significance. Stress, 7, 2937.CrossRefGoogle ScholarPubMed
Cummings, E. M., Davies, P. T., & Simpson, K. S. (1994). Marital conflict, gender, and children's appraisals and coping efficacy as mediator of child adjustment. Special Section. Context of interparental conflict and child behaviour. Journal of Family Psychology, 8, 141149.CrossRefGoogle Scholar
Davis, E. P., Bruce, J., & Gunnar, M. R. (2002). The anterior attention network: Associations with temperament and neuroendocrine activity in 6-year-old children. Developmental Psychobiology, 40, 4356.CrossRefGoogle ScholarPubMed
DeKloet, E. R., Oitzl, M. S., & Joels, M. (1999). Stress and cognition: Are corticoids good or bad guys? TINS, 22, 422426.Google Scholar
Del Barrio, M. D. (1997). Estresores infantiles y afrontamiento. In Hombrados, M. I (Coor.), Estrés y salud (pp: 351378). Valencia, Spain: PromolibroGoogle Scholar
Diorio, D., Viau, V., & Meany, M.J. (1993). The role of the medial prefrontal cortex (cingulote gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. The Journal of Neuroscience, 13, 38393847.CrossRefGoogle ScholarPubMed
Dressendörfer, R. A., Kirschbaum, C., Rohde, W., Stahl, F., & Strasburger, C. J. (1992). Synthesis of a cortisol biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement. The Journal of Steroid Biochemistry and Molecular Biology, 43, 683692.CrossRefGoogle Scholar
Edwards, S., Evans, P., Hucklebridge, F., & Clow, A. (2001). Association between time of awakening and diurnal cortisol secretory activity. Psychoneuroendocrinology, 26, 613622.CrossRefGoogle ScholarPubMed
Erickson, K., Drevets, W., & Schulkin, J. (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience & Biobehavioral Reviews, 27, 233246.CrossRefGoogle ScholarPubMed
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73, 12381248.CrossRefGoogle ScholarPubMed
Evans, G. W., Lercher, P., Meis, M., Ising, H., & Kofler, W. W. (2001). Community noise exposure and stress in children. Journal of the Acoustical Society of America, 109, 10231027.CrossRefGoogle ScholarPubMed
Fernandez, F. J., Hierrezuelo, L., Blanca, M. J., Morales, F., & Muñoz, A. (2005, July). “Inventario Infantil de Estresores Cotidianos” (IIEC): reliability and validity. Poster presented at the 26th International Conference of Stress and Anxiety Research Society, Halle (Germany).Google Scholar
Fink, G.R., Markowitsch, H.J., Reinkemeier, M., Bruckbauer, T., Kessler, J., & Heiss, W.D. (1996). Cerebral representation of one's own past: Neural networks involved in autobiographical memory. Journal of Neuroscience, 16, 42754282.CrossRefGoogle ScholarPubMed
Flinn, M. V., & England, B. G. (1997). Social economics of childhood glucocorticoid stress response and health. American Journal of Physical Anthropology, 102, 3353.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Folkman, S., & Lazarus, R. S. (1985). If it changes it must be a process: Study of emotion and coping during three stages of a college examination. Journal of Personality and Social Psychology, 48, 150170.CrossRefGoogle ScholarPubMed
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 10101016.CrossRefGoogle ScholarPubMed
Gilman, S., Thornton, R., Miller, D., & Biersner, R. (1979). Effects of exercise stress on parotid gland secretion. Hormone and Metabolic Research, 11, 454.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.CrossRefGoogle Scholar
Haines, M. M., Stansfeld, S. A., Brentnall, S., Head, J., Berry, B., Jiggins, M., & Hygge, S. (2001a). The West London Schools Study: The effects of chronic aircraft noise exposure on child health. Psychological Medicine, 31, 13851396.Google ScholarPubMed
Haines, M. M., Stansfeld, S. A., Job, R. F., Berglund, B., & Head, J. (2001b). Chronic aircraft noise exposure, stress responses, mental health and cognitive performance in school children. Psychological Medicine, 31, 265277.Google ScholarPubMed
Heffelfinger, A. K., & Newcomer, J. W. (2001). Glucocorticoid effects on memory function over the human life span. Development and Psychopathology, 13, 491513.CrossRefGoogle ScholarPubMed
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25, 135.CrossRefGoogle ScholarPubMed
Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49, 10231039.CrossRefGoogle ScholarPubMed
Ising, H., & Ising, M. (2002). Chronic cortisol increases in the first half of the night caused by road traffic noise. Noise and Health, 4, 1321.Google ScholarPubMed
Kirschbaum, C., Wolf, J., & Rohleder, N. (2003, August). Gender and cigarette smoking influence the stress response of salivary α-amylase in healthy subjects. Paper presented at the Annual Meeting of the American Psychosomatic Society, Phoenix, AZ.Google Scholar
Korte, S. H., Koolhaas, J. M., Wingfield, J. C., & McEwen, B. S. (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience & Biobehavioral Reviews, 29, 338.CrossRefGoogle ScholarPubMed
Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H., & Kirschbaum, C. (2004). HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: Impact of age and gender. Psychoneuroendocrinology, 29, 8398.CrossRefGoogle ScholarPubMed
Landfield, P.W., Baskin, R. K., & Pitler, T. A. (1981). Brain aging correlates: Retardation by hormonal-pharmacological treatments. Science, 214, 581584.CrossRefGoogle ScholarPubMed
Landfield, P.W., Waymire, J.C., & Lynch, G. (1978). Hippocampal aging and adrenocorticoids: A quantitative correlation. Science, 202, 10981102.CrossRefGoogle Scholar
Langrock, A. M., Compas, B. E., Keller, G., Merchant, M. J., & Copeland, M. E. (2002). Coping with the stress of parental depression: Parents' reports of children's coping, emotional and behavioural problems. Journal of Clinical Child and Adolescent Psychology, 31, 312324.CrossRefGoogle Scholar
Lazarus, R., & Folkman, S. (1984). Stress, appraisal and coping. New York: Springer.Google Scholar
Lupien, S. J., Fiocco, A., Wan, N., Maheu, F., Lord, C., Schramek, T., & Tu, M. T. (2005). Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology, 30, 225242.CrossRefGoogle ScholarPubMed
Lupien, S. J., Gillin, C.J., & Hauger, R. L. (1999). Working memory is more sensitive than declarative memory to acute-effects of corticosteroids: A dose-response study in humans. Behavioral Neuroscience, 113, 420430.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child's stress hormone levels correlate with mother's socioeconomic status and depressive state. Biological Psychiatry, 48, 976980.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.CrossRefGoogle Scholar
Lupien, S. J., & McEwen, B. S. (1997). The acute effects of glucocorticoids on cognition: Integration of animal and human model studies. Brain Research Reviews, 24, 127.CrossRefGoogle Scholar
Lupien, S. J., Wilkinson, C. W., Brière, S., Ménard, C., Ng Ying Kin, N. M., & Nair, P. N. (2002). The modulatory effects of corticosteroids on cognition: Studies in young human populations. Psychoneuroendocrinology, 27, 401416.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2000). The neurobiology of stress: From serendipity to clinical relevance. Brain Research, 886, 172189.CrossRefGoogle Scholar
McEwen, B. S., DeKloet, E. R., & Rostene, W. (1986). Adrenal steroid receptors and actions in the nervous system. Physiological Reviews, 66, 11211150.CrossRefGoogle Scholar
McEwen, B. S., Weiss, J. M., & Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220, 911912.CrossRefGoogle ScholarPubMed
Meany, M. J., & Aitken, D. H. (1985). [3H]dexamethasone binding in rat frontal cortex. Brain Research, 328, 176180.CrossRefGoogle Scholar
Meinlschmidt, G., & Heim, C. (2005). Decreased cortisol awakening response after early loss experience. Psychoneuroendocrinology, 30, 568576.CrossRefGoogle ScholarPubMed
Milgram, N. A. (1992). Children under stress. In Ollendick, T. & Hersen, M. (Eds.), Handbook of child psychopathology (pp. 399415). New York: Plenum. [Spanish translation: Psicopatología infantil. Barcelona, Spain: Martinez Roca, 1993].Google Scholar
Nachmias, M., Gunnar, M., Mangelsdorf, S., Parritz, R. H., & Buss, K. (1996). Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Development, 67, 508522.CrossRefGoogle ScholarPubMed
Nater, U. M. (2004). The role of sAA in stress research. Göttingen, Germany: Cuvillier Verlag.Google Scholar
Nater, U. M., Rohleder, N., Gaab, J., Berger, S., Jud, A., Kirschbaum, C., & Ehlert, U. (2005). Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. International Journal of Psychophysiology, 55, 333342.CrossRefGoogle Scholar
Nater, U. M., La Marca, R., Florin, L., Moses, A., Langhans, W., Koller, M. M., & Ehlert, U. (2006). Stress-induced changes in human salivary alpha-amylase activity – associations with adrenergic activity. Psychoneuroendocrinology, 31, 4958.CrossRefGoogle ScholarPubMed
Nater, U. M., Rohleder, N., Schlotz, W., Ehlert, U., Kirschbaum, C. (2007). Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology, 32, 392401.CrossRefGoogle ScholarPubMed
Parmelee, A. H. (1997). Illness and the development of social competence. Journal of Developmental and Behavioral Pediatrics, 18, 120124.CrossRefGoogle ScholarPubMed
Patel, P. D., Lopez, J. F., Lyons, D. M., Burke, S., Wallace, M., & Schatzberg, A. F. (2000). Glucocorticoid and mineralcorticoid receptor mRNA expression in squirrel monkey brain. Journal of Psychiatric Research, 34, 383392.CrossRefGoogle Scholar
Piekarska, A. (2000). School stress, teachers' abusive behaviors and children's coping strategies. Child Abuse and Neglect, 24, 11431149.CrossRefGoogle ScholarPubMed
Posner, M. I., & Rothbart, M. K. (1994). Attention regulation: From mechanism to culture. In Bartelson, P.Elen, P., & d'Ydewalle, G. (Eds.), International perspectives on psychological science: Leading themes (Vol. 1, pp. 4154). Hillsdale, NJ: Erlbaum.Google Scholar
Pruessner, J. C., Hellhammer, D. H., & Kirschbaum, C. (1999). Burnout, perceived stress, and cortisol responses to awakening. Psychosomatic Medicine, 61, 197204.CrossRefGoogle ScholarPubMed
Pruessner, M., Hellhammer, D. H., Pruessner, J. C., & Lupien, S. J. (2003). Self-reported depressive symptoms and stress levels in healthy young men: Associations with the cortisol response to awakening. Psychosomatic Medicine, 65, 9299.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., BuskeKirschbaum, A., von Auer, K., Jobst, S., Kaspers, F., & Kirschbaum, C. (1997). Free cortisol levels after awakening:A reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61, 25392549.CrossRefGoogle ScholarPubMed
Raviv, A., Erel, O., Fox, N. A., Leavitt, L. A., Raviv, A., Dar, I., Shahinfar, A., & Greenbaum, C. W. (2001). Individual measurement of exposure to everyday violence among elementary schoolchildren across various settings. Journal of Community Psychology, 29, 117140.3.0.CO;2-2>CrossRefGoogle Scholar
Reul, J. M., & DeKloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117, 25052511.CrossRefGoogle ScholarPubMed
Reynolds, C. R., & Kamphaus, R. W. (1992). Behavior assessment system for children (BASC). Circle Pines, MN: American Guidance Services [Spanish translation: Sistema de Evaluación de la conducta en Niños y Adolescentes (BASC). Madrid: TEA Ediciones, 2004.]Google Scholar
Richters, J. E., & Martinez, P. (1993). The NIMH community violence project: I. Children as victims of and witnesses to violence. Psychiatry Interpersonal and Biological Processes, 56, 721.CrossRefGoogle ScholarPubMed
Roeser, R. W., & Eccles, J. S. (1998). Adolescents' perceptions of middle school: Relation to longitudinal changes in academic and psychological adjustment. Journal of Research on Adolescence, 8, 123158.CrossRefGoogle Scholar
Rohleder, N., Nater, U. M., Wolf, J. M., Ehlert, U., & Kirschbaum, C. (2004). Psychological stress-induced activation of salivary alpha-amylase. Annals of New York Academy of Sciences, 1032, 258263.CrossRefGoogle ScholarPubMed
Rohleder, N., Wolf, J.M., Maldonado, E. F., & Kirschbaum, C. (2006). The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology, 43, 645652.CrossRefGoogle ScholarPubMed
Roozendaal, B. (1999). Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 25, 213238.CrossRefGoogle Scholar
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T.R. (2000). Distribution of corticosteroid receptors in the rhesus brain: Relative absence of glucorticoid receptors in the hippocampal formation. Journal of Neuroscience, 20, 46574668.CrossRefGoogle Scholar
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986) The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrine Reviews. 7, 284301.CrossRefGoogle ScholarPubMed
Sauro, M. D., Jorgensen, R. S., & Pedlow, C. T. (2003). Stress, glucocorticoids, and memory: A meta-analytic review. Stress, 6, 235245.CrossRefGoogle ScholarPubMed
Seifer, R., Sameroff, A. J., Dickstein, S., Keitner, G., Miller, I., Rasmussen, S., & Hayden, L. C. (1996). Parental psychopathology, multiple contextual risks, and one-year outcomes in children. Journal of Clinical Child Psychology, 25, 423435.CrossRefGoogle Scholar
Skosnik, P. D., Chatterton, R. T., Swisher, T., & Park, S. (2000). Modulation of attentional inhibition by norepinephrine and cortisol after psychological stress. International Journal of Psychophysiology, 36, 5968.CrossRefGoogle ScholarPubMed
Spangler, G., & Grossman, K.E. (1993). Biobehavioral organization in securely and insecurely attached infants. Child Development, 64, 14391450.CrossRefGoogle ScholarPubMed
Spangler, G., & Schieche, M. (1998). Emotional and adrenocortical responses of infants to the strange situation: The differential function of emotional expression. International Journal of Behavioral Development, 22, 681706.CrossRefGoogle Scholar
Stefanello, R. (2004). A preliminary study of stress symptoms and nutritional state in children. Stress and Health, 20, 293299.CrossRefGoogle Scholar
Stegeren, A. V., Rohleder, N., Everaerd, W., & Wolf, O.T. (2006). Salivary alpha-amylase as marker for adrenergic activity during stress: Effect of betablockade. Psychoneuroendocrinology, 31, 137141.CrossRefGoogle ScholarPubMed
Tennes, K., & Kreye, M. (1985). Children's adrenocortical responses to classroom activities and tests in elementary school. Psychosomatic Medicine, 47, 451460.CrossRefGoogle ScholarPubMed
Torsheim, T., Aaroe, L. E., & Wold, B. (2003). School-related stress, social support, and distress: prospective analysis of reciprocal and multilevel relationships. Scandinavian Journal of Psychology, 44, 153159.CrossRefGoogle ScholarPubMed
Torsheim, T., & Wold, B. (2001). School-related stress, school support, and somatic complaints: A general population study. Journal of Adolescent Research, 3, 293303.CrossRefGoogle Scholar
Trianes, M. V., Blanca, M. J., Fernandez, F. J., Escobar, M., & Maldonado, E. F. (2007). Measuring daily stress in Spanish school children. Development and psychometric properties of the Children Daily Stress Inventory. Manuscript submitted for publication.Google Scholar
Turner-Cobb, J. M. (2005). Psychological and stress hormone correlates in early life: A key to HPA-axis dysregulation and normalisation. Stress, 8, 4757.CrossRefGoogle ScholarPubMed
Wesnes, K. A., Pincock, C., Richardson, D., Helm, G., & Hails, S. (2003). Breakfast reduces declines in attention and memory over the morning in schoolchildren. Appetite, 41, 329331.CrossRefGoogle ScholarPubMed
Wesnes, K. A., Ward, T., McGinty, A., & Petrini, O. (2000). The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle aged volunteers. Psychopharmacology, 152, 353361.CrossRefGoogle ScholarPubMed
Wüst, S., Federenko, I., Hellhammer, D. H., & Kirschbaum, C. (2000). Genetic factors, perceived chronic stress, and the free cortisol response to awakening. Psychoneuroendocrinology, 25, 707720.CrossRefGoogle ScholarPubMed
Wüst, S., Wolf, J., Hellhammer, D. H., Federenko, I., Schommer, N., & Kirschbaum, C. (2000). The cortisol awakening response - normal values and confounds. Noise and Health, 2, 7988.Google ScholarPubMed
Young, A. H., Sahakian, B. J., Robbins, T. W., & Cowen, P. J. (1999). The effects of chronic administration of hydrocortisone on cognitive function in normal male volunteers. Psychopharmacology, 145, 260266.CrossRefGoogle ScholarPubMed
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cognitive Performance and Morning Levels of Salivary Cortisol and α-Amylase in Children Reporting High vs. Low Daily Stress Perception
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Cognitive Performance and Morning Levels of Salivary Cortisol and α-Amylase in Children Reporting High vs. Low Daily Stress Perception
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Cognitive Performance and Morning Levels of Salivary Cortisol and α-Amylase in Children Reporting High vs. Low Daily Stress Perception
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *