Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T09:24:56.561Z Has data issue: false hasContentIssue false

Alternatives to Dark Matter (?)

Published online by Cambridge University Press:  26 May 2016

Anthony Aguirre*
Affiliation:
Department of Physics/SCIPP, UC Santa Cruz, 1156 High St. Santa Cruz, CA 95064; aguirre@scipp.ucsc.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It has long been known that Newtonian dynamics applied to the visible matter in galaxies and clusters does not correctly describe the dynamics of those systems. While this is generally taken as evidence for dark matter it is in principle possible that instead Newtonian dynamics (and with it General Relativity) breaks down in these systems. Indeed there have been a number of proposals as to how standard gravitational dynamics might be modified so as to correctly explain galactic dynamics without dark matter. I will review this general idea (but focus on “MOdified Newtonian Dynamics”, or “MOND”), and discuss a number of ways alternatives to dark matter can be tested and, in many cases, ruled out.

Type
Part 2: Introduction to Dark Matter in Galaxies
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aguirre, A., et al. 2001, Classical and Quantum Gravity, 18, 223.Google Scholar
Aguirre, A., Schaye, J., & Quataert, E. 2001, ApJ, 561, 550.Google Scholar
Bekenstein, J., & Milgrom, M. 1984, ApJ, 286, 7.Google Scholar
Bekenstein, J., & Sanders, R. H. 1994, ApJ, 429, 480.Google Scholar
Dalal, N., & Kochanek, C. S. 2002, ApJ, 572, 25.Google Scholar
Gerhard, O., Kronawitter, A., Saglia, R. P., & Bender, R. 2001, AJ, 121, 1936.Google Scholar
Hoekstra, H., Yee, H. K. C., & Gladders, M. D. 2002, NewAR, 46, 767.Google Scholar
Kaplinghat, M., & Turner, M. 2002, ApJ, 569, L19.Google Scholar
Mannheim, P. D. 1993, ApJ, 419, 150.Google Scholar
Mannheim, P. D. 1997, ApJ, 479, 659.Google Scholar
McGaugh, S. S. 1999, ApJ, 523, L99.CrossRefGoogle Scholar
Milgrom, M. 1983, ApJ, 270, 365.CrossRefGoogle Scholar
Milgrom, M. 1999, in Dark Matter in Astrophysics and Particle Physics, eds. Klapdor-Kleingrothaus, H. V. & Baudis, L. (Philadelphia: Institute of Physics Pub.), p.443.Google Scholar
Milgrom, M. 2002, ApJ, 571, L81.Google Scholar
Milgrom, M., & Sanders, R. H. 2003, astro-ph/0309617.Google Scholar
Moffat, J. W., & Sokolov, I. Y. 1996, Physics Letters B, 378, 59.Google Scholar
Prada, F., et al. 2003, astro-ph/0301360.Google Scholar
Romanowsky, A. J., et al. 2003, Science, 301, 1696.Google Scholar
Sanders, R. H. 1999, ApJ, 512, L23.Google Scholar
Sanders, R. H. 2000, MNRAS, 313, 767.CrossRefGoogle Scholar
Sanders, R. H. 2003, MNRAS, 342, 901.Google Scholar
Sanders, R. H., & McGaugh, S. S. 2002, ARA&A, 40, 263.Google Scholar
Soussa, M. E., & Woodard, R. P. 2003, astro-ph/0307358.Google Scholar
The, L. S., & White, S. D. M. 1988, AJ, 95, 1642.Google Scholar