Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T07:34:49.612Z Has data issue: false hasContentIssue false

The Determination of Extinction and Temperature for the Central Star of the Planetary Nebula NGC 40

Published online by Cambridge University Press:  04 August 2017

L. Bianchi
Affiliation:
Astronomical Observatory of Turin
M. Grewing
Affiliation:
Astronomical Institute, University of Tubingen

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

NGC 40 is an extended, very inhomogeneous planetary nebula, with a WC8 central star. Very discrepant determinations exist in the literature for the extinction towards this object and the temperature of its nucleus. We review here the various methods which can be used to derive these quantities, discussing the assumptions underlying each method and their inherent limitatons, and the uncertainties that arise when they are applied to this particular object. The results are compared to the values which we derive from far UV spectrophotometry: E(B-V) = 0.50 and T* ≍ 90000K.

Type
Research Article
Copyright
Copyright © Reidel 1985 

References

Aller, L. H. 1968, in IAU Symposium No. 34, Planetary Nebulae, ed. Osterbroch, D. E. and O'Dell, C. R. (Reidel, Dordrecht), p.339.Google Scholar
Aller, L. H. and Czyzak, S. J. 1979, Astrophys. Space Sci., 62, 397.CrossRefGoogle Scholar
Aller, L. H., Czyzak, S. J., Buerger, E. G. and Lee, P. 1972, Astrophys. J., 172, 361.Google Scholar
Benvenuti, P., Perinotto, M. and Willis, A. 1982, in IAU Symposium No. 99, Wolf-Rayet Stars: Observations, Physics, Evolution, ed. de Loore, C. W. H. and Willis, A. J. (Reidel, Dordrecht), p.453.CrossRefGoogle Scholar
Bianchi, L. and Grewing, M. 1984, in Future of Ultraviolet Astronomy, Based on Six Years of IUE Research, ed. Mead, J. M., Chapman, R. D. and Kondo, Y. (NASA, Washington, D. C.). p.262.Google Scholar
Cahn, J. H. 1976, Astron. J., 81, 407.Google Scholar
Cahn, J. H. and Kaler, J. B. 1971, Astrophys. J. Suppl. 22, 319.CrossRefGoogle Scholar
Clegg, R., Seaton, M., Peimbert, M. and Torres-Peimbert, S. 1983, Mon. Not. R. Astron. Soc., 205, 417.Google Scholar
Carrasco, L., Senano, A. and Costero, R. 1983, Rev. Mexicana Astron. Astrof., 8, 187.Google Scholar
Hackwell, J., Gehrz, R. and Grasdalen, G. 1979, Astrophys. J., 234, 133.Google Scholar
Higgs, L. A. 1971, Mon. Not. R. Astron. Soc., 153, 315.Google Scholar
Hiltner, W. and Schild, R. 1966, Astrophys. J., 143, 770.Google Scholar
van der Hucht, K., Conti, P. and Willis, A. 1982, in IAU Symposium No. 99, Wolf-Rayet Stars: Observations, Physics, Evolution, ed. de Loore, C. W. H. and Willis, A. J. (Reidel, Dordrecht), p.277.Google Scholar
van der Hucht, K., Williams, P. and The, P. 1984, preprint.Google Scholar
Kaler, J. B. 1970, Astrophys. J., 160, 887.Google Scholar
Köppen, J. and Tarafdar, S. P. 1978, Astron. Astrophys., 69, 363.Google Scholar
Lang, K. R. 1974, in: Astrophysical Formulae, p.108.Google Scholar
Milne, D. K. and Aller, L. H. 1975, Astron. Astrophys., 38, 183.Google Scholar
Minkowski, R. and Aller, L. H. 1956, Astrophys. J., 124, 93.Google Scholar
Pottasch, S., Wesselius, P., Wu, C. and van Duinen, R. 1977, Astron. Astrophys., 54, 435.Google Scholar
Pottasch, S., Wesselius, P., Wu, C., Feiten, H. and van Duinen, R. 1978, Astron. Astrophys., 62, 95.Google Scholar
Webster, B. L. 1979, Mon. Not. R. Astron. Soc., 174, 157.Google Scholar