Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T20:57:07.582Z Has data issue: false hasContentIssue false

Herbig-Haro Objects as Searchlights for Dense Cloud Chemistry

Published online by Cambridge University Press:  25 May 2016

S. D. Taylor*
Affiliation:
University College London, Gower St., London WC1E 6BT, England

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars form from dense pockets of gas that have undergone gravitational collapse, and young stars are still embedded in this molecular material. There is no lack of evidence that the outflows from these stars, manifested in the form of Herbig-Haro objects and jets, interact dynamically with the dense gas either in the form of shock excitation or the imparting of momentum; molecular outflows, H2 emission, and perhaps also CO and SiO bullets and jets, are tracers of this phenomenon. However there are a set of radio observations of molecules showing emission near HH objects that are remarkable for their apparent lack of signatures of such dynamic interaction. A likely cause of this ‘quiescent’ emission is a radiative interaction between the HH shock system emission and ambient gas.

Type
II. The Physics and Chemistry of Molecular Outflows
Copyright
Copyright © Kluwer 1997 

References

Bakes, E.L.O, Tielens, A.G.G.M., 1994, ApJ, 427, 822.CrossRefGoogle Scholar
Böhm, K.H, Solf, J., 1992, AJ, 104, 1193.CrossRefGoogle Scholar
Brown, P.D., Millar, T.J., 1989, MNRAS, 237, 661.CrossRefGoogle Scholar
Chiar, J.E., Adamson, A.J., Kerr, T.H., Whittet, D.C.B., 1995, ApJ, 455, 234.CrossRefGoogle Scholar
Chernin, L.M., Masson, C.R., 1995, ApJ, 443, 181.CrossRefGoogle Scholar
Davis, C.J., Dent, W.R.F., 1993, MNRAS, 261, 371.CrossRefGoogle Scholar
Davis, C.J., Dent, W.R.F., Bell Burnell, S.J., 1990, MNRAS, 244, 173.Google Scholar
Dent, W.R.F., 1997, in Low Mass Star Formation - from Infall to Outflow, poster proceedings of IAU Symp. No. 182, ed. Malbet, F. & Castets, A., Grenoble, p.88.Google Scholar
Dent, W.R.F., et al., 1993, MNRAS, 262, L13.CrossRefGoogle Scholar
Draine, B.T., 1978, ApJS, 36, 595.CrossRefGoogle Scholar
Girart, J.M., et al., 1994, ApJ, 435, L145.Google Scholar
Hartquist, , Williams, & Whittet, 1992 MNRAS, 258, 599.Google Scholar
Hollenbach, D.J., McKee, C.F., 1979, ApJS, 41, 555.CrossRefGoogle Scholar
Hollenbach, D.J., Takahashi, T., Tielens, A.G.G.M., 1991, ApJ, 377, 192.CrossRefGoogle Scholar
Liseau, R., Sandell, G., Knee, L.B.G., 1988, A&A, 192, 153.Google Scholar
Millar, T.J., 1993, Dust and Chemistry in Astronomy. Millar, T.J., Williams, D.A. (eds.), IOP Publishing Ltd., Bristol.Google Scholar
Ogura, K., 1996, ApJ, 450, L23.Google Scholar
Reipurth, B., Heathcote, S., 1992, A&A, 257, 693.Google Scholar
Rudolph, A., 1992, ApJ, 397, L111.CrossRefGoogle Scholar
Rudolph, A. Welch, W.J., 1988, ApJ, 326, L31.CrossRefGoogle Scholar
Rudolph, A., Welch, W.J., 1992, ApJ, 395, 488.CrossRefGoogle Scholar
Taylor, S.D., Morata, O., Williams, D.A., A&A, 313, 269.Google Scholar
Taylor, S.D., Williams, D.A., 1996, MNRAS, 282, 1343.CrossRefGoogle Scholar
Torrelles, J.M., et al., 1992, ApJ, 396, L95.CrossRefGoogle Scholar
Torrelles, J.M., et al., 1993, ApJ, 417, 655.CrossRefGoogle Scholar
Whittet, D.C.B., et al., 1996, A&A, 315, L357.Google Scholar
Williams, D.A., 1994, Contemporary Physics, 35, 269.CrossRefGoogle Scholar
Wolfire, M.G., Königl, A., 1991, ApJ, 383, 205.CrossRefGoogle Scholar
Wolfire, M.G., Königl, A., 1993, ApJ, 415, 204 (WK93).CrossRefGoogle Scholar