Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-14T06:48:15.243Z Has data issue: false hasContentIssue false

Luminous Supersoft X-ray Sources

Published online by Cambridge University Press:  25 May 2016

S. Rappaport
Affiliation:
Department of Physics and Center for Space Research MIT, Cambridge, MA 02139, U.S.A.
R. Di Stefano
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden St., Cambridge, MA 02138, U.S.A.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supersoft X-ray sources exhibit spectra that are remarkably steep, in that the ratio of low-to-high energy X rays is much larger than is characteristic of the spectra associated with the previously known classes of luminous X-ray sources. The first supersoft sources were discovered during a survey of the Large Magellanic Cloud with the EINSTEIN Observatory (Long et al. 1981). The all-sky X-ray survey carried out with ROSAT has now established that luminous supersoft X-ray sources constitute a distinct astronomical class (see, e.g., Hasinger 1994). A number of the identified optical counterparts of the supersoft X-ray sources exhibit blue continua with emission lines of H and He II (Smale et al. 1988; Pakull et al. 1988; Cowley et al. 1990), which are characteristic of accretion disks. The X-ray emission of some sources is steady, while others exhibit significant time variability. Table 1 briefly summarizes what is known thus far about the numbers and characteristics of supersoft X-ray sources (see Hasinger 1994, and references therein).

Type
7 Cataclysmic Variables
Copyright
Copyright © Kluwer 1996 

References

Cappellaro, E. et al. 1993, A&A 273, 383.Google Scholar
Cowley, A.P., Schmidtke, P.C., Crampton, D. & Hutchings, J.B. 1990, ApJ 350, 288.CrossRefGoogle Scholar
de Kool, M. 1992, A&A 261, 188.Google Scholar
Di Stefano, R. & Rappaport, S. 1994, (in press).Google Scholar
Di Stefano, R., Paerels, F. & Rappaport, S. 1994, (in preparation).Google Scholar
Hasinger, G. 1994, in Evolution of X-Ray Binaries , Holt, S.S. & Day, C.S. (Eds.), AIP Conf. Proc. 308, Amer. Inst. Phys. (New York), p. 611.Google Scholar
Hughes, J.P. 1994, ApJ 427, L25.CrossRefGoogle Scholar
Iben, I. Jr. 1982, ApJ 259, 244.CrossRefGoogle Scholar
Jacoby, G.H. et al. 1992, PASP 104, 599.CrossRefGoogle Scholar
Kallman, T.R. & McCray, R.A. 1982, ApJS 50, 263.CrossRefGoogle Scholar
Kallman, T.R. & Krolik, J.H. 1993, (preprint).Google Scholar
Kippenhahn, R., Kohl, K. & Weigert, A. 1967, Zeits. für Astrophys. 66, 58.Google Scholar
Kylafis, N.D. & Xilouris, E. 1993, A&A 278, L43.Google Scholar
Livio, M. & Soker, N. 1988, ApJ 329, 764.CrossRefGoogle Scholar
Livio, M., Prialnik, D. & Regev, O. 1989, ApJ 341, 299.CrossRefGoogle Scholar
Long, K.S., Helfand, D.J. & Grabelsky, D.A. 1981, ApJ 248, 925.CrossRefGoogle Scholar
Meyer, F. & Meyer-Hofmeister, E. 1979, A&A 78, 167.Google Scholar
Mukai, K. 1993, (private communication).CrossRefGoogle Scholar
Nomoto, K. 1982, ApJ 253, 798.CrossRefGoogle Scholar
Osterbrock, D.E. 1989, Astrophysics of Gaseous Nebulae Univ. Sci. Books (Mill Valley).Google Scholar
Paczyński, B. 1965, Acta Astr. 15, 89.Google Scholar
Paczyński, B. 1967, Acta Astr. 17, 193.Google Scholar
Paczyński, B. 1970, Acta Astr. 20, 287.Google Scholar
Paczyński, B. 1976, in Structure and Evolution of Close Binary Systems , IAU Symp. 73, Eggleton, P., Mitton, S. & Whelan, J. (Eds.), Reidel, p. 75.CrossRefGoogle Scholar
Pakull, M.W. & Motch, C. 1989, in ESO Workshop on Extranuclear Activity in Galaxies , Meurs, E.J.A. & Fosbury, R.A.E. (Eds.), p. 285.Google Scholar
Pakull, M.W., Beuermann, K., Van der Klis, M. & Van Paradijs, J. 1988, A&A 203, L27.Google Scholar
Prialnik, D. & Kovetz, A. 1994, (preprint).Google Scholar
Rappaport, S., Di Stefano, R. & Smith, J.D. 1994, ApJ 426, 492 (RDS).CrossRefGoogle Scholar
Rappaport, S., Chiang, E., Kallman, T. & Malina, R. 1994, ApJ 431, 237.CrossRefGoogle Scholar
Remillard, R., Rappaport, S. & Macri, L. 1994, ApJ (in press).Google Scholar
Sion, E.M. & Starrfield, S.G. 1986, ApJ 303, 130.CrossRefGoogle Scholar
Sion, E.M., Acierno, M.J. & Tomcszyk, S. 1979, ApJ 230, 832.CrossRefGoogle Scholar
Smale, A.P. et al. 1988, MNRAS 233, 51.CrossRefGoogle Scholar
Sparks, W.M. & Stecher, T.P. 1974, ApJ 188, 149.CrossRefGoogle Scholar
Taam, R.E. 1980, ApJ 242, 749.CrossRefGoogle Scholar
Taam, R.E., Bodenheimer, P. & Ostriker, J.P. 1978, ApJ 222, 269.CrossRefGoogle Scholar
Van den Heuvel, E.P.J. 1994, (private communication).Google Scholar
Van den Heuvel, E.P.J., Bhattacharya, D., Nomoto, K. & Rappaport, S.A. 1992, A&A 262, 97.Google Scholar
Webbink, R. 1979, in White Dwarfs and Variable Degenerate Stars , IAU Colloquium 53, Van Horn, H. & Weidemann, V. (Eds.), University of Rochester Press, p. 426.Google Scholar
Webbink, R.F. 1985, in Interacting Binary Stars , Pringle, J.E. & Wade, R.A. (Eds.), Cambridge Univ. Press, p. 39.Google Scholar
Webbink, R. 1992, in X-Ray Binaries and Recycled Pulsars , Van den Heuvel, E.P.J. & Rappaport, S. (Eds.), Kluwer Academic Publishers, p. 269.CrossRefGoogle Scholar