Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-22T16:50:44.677Z Has data issue: false hasContentIssue false

New Evidence for Accretion Disks in AGNs

Published online by Cambridge University Press:  07 August 2017

Jules P. Halpern
Affiliation:
Columbia Astrophysics Laboratory, Columbia University, 538 W. 120th Street, New York, New York 10027
Kaiyou Chen
Affiliation:
Columbia Astrophysics Laboratory, Columbia University, 538 W. 120th Street, New York, New York 10027

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have refined our calculation of the line profile of a relativistic, Keplerian disk by incorporating a variety of emissivity laws, as well as broadening due to turbulence or electron scattering. The significant improvement in the fit to the double-peaked Ha line profile of the elliptical radio galaxy Arp 102B provides the most convincing direct evidence for an accretion disk in any AGN. Arp 102B appears to be a low-luminosity analog of 3C 390.3, and several lines of evidence point to the existence of small, hot ion tori illuminating an outer thin disk in both of these galaxies. The rarity of these emission-line profiles might be understood if this particular combination of ion torus/thin disk occurs only for a narrow range of (= Ṁ/ṀEdd).

Type
Part 4: Black Holes, Accretion Disks and Gravitational Lenses
Copyright
Copyright © Kluwer 1989 

References

Alloin, D., Boisson, C., and Pelat, D. 1988, Astr. Ap., in press.Google Scholar
Begelman, M. C. 1985, in Astrophysics of Active Galaxies and Quasi-Stellar Objects, ed. Miller, J. S. (Mill Valley: University Science Books), p. 411.Google Scholar
Begelman, M. C. 1988, in Supermassive Black Holes, ed Kafatos, E. M. (Cambridge: Cambridge University Press), p. 259.Google Scholar
Blandford, R. D., and McKee, C. F. 1982, Ap. J., 255, 419.CrossRefGoogle Scholar
Chen, K., Halpern, J. P., and Filippenko, A. V. 1988, Ap. J., submitted (CHF).Google Scholar
Collin-Souffrin, S. 1987, Astr. Ap., 179, 60.Google Scholar
Halpern, J. P., and Filippenko, A. V. 1988, Nature, 331, 46.CrossRefGoogle Scholar
Mardaljevic, J., Raine, D. J., and Walsh, D. 1988, Ap. Lett. Comm., 26, 357.Google Scholar
Miley, G., Neugebauer, G., Clegg, P. E., Harris, S., Rowan-Robinson, M., Soiffer, B. T., and Young, E. 1984, Ap. J. (Letters), 278, L79.CrossRefGoogle Scholar
Oke, J. B. 1987, in Superluminal Radio Sources, eds. Zensus, J. A. and Pearson, T. J. (Cambridge: Cambridge University Press), p. 267.Google Scholar
Perez, E., Penston, M. V., Tadhunter, C., Mediavilla, E., and Moles, M. 1988, M.N.R.A.S., 230, 353.CrossRefGoogle Scholar
Peterson, B. M., Meyers, K. A., Capriotti, E. R., Foltz, C. B., Wilkes, B. J., and Miller, H. R. 1985, Ap. J., 292, 164.CrossRefGoogle Scholar
Rees, M. J., Begelman, M. C., Blandford, R. D., and Phinney, E. S. 1982, Nature, 295, 17.CrossRefGoogle Scholar
Shakura, N. I., and Sunyaev, R. A. 1973, Astr. Ap., 24, 337.Google Scholar
Shields, G. A. and McKee, C. F. 1981, Ap. J. (Letters), 246, L57.CrossRefGoogle Scholar