Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-16T03:38:31.359Z Has data issue: false hasContentIssue false

Probing the Redshift Desert Using the Gemini Deep Deep Survey: Observing Galaxy Mass Assembly at z > 1

Published online by Cambridge University Press:  23 September 2016

Karl Glazebrook
Affiliation:
Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218-2686, United States
Gemini Deep Deep Survey Team
Affiliation:
(http://www.ociw.edu/lcirs/gdds.html)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of the Gemini Deep Deep Survey is to push spectroscopic studies of complete galaxy samples (both red and blue objects) significantly beyond z = 1; this is the redshift where the current Hubble sequence of ellipticals and spirals is already extant. In the Universe at z = 2 the only currently spectroscopically confirmed galaxies are blue, star-forming and of fragmented morphology. Exploring this transition means filling the ‘redshift desert’ 1 < z < 2 where there is a dearth of spectroscopic measurements. To do this we need to secure redshifts of the oldest, reddest galaxies (candidate ellipticals) beyond z > 1 which has led us to carry out the longest exposure redshift survey ever done: 100 ksec spectroscopic MOS exposures with GMOS on Gemini North. We have developed an implementation of the CCD “nod & shuffle” technique to ensure precise sky-subtraction in these ultra-deep exposures. At the halfway mark the GDDS now has ∼ 36 galaxies in the redshift desert 1.2 < z < 2 extending up to z = 1.97 and I < 24.5 with secure redshifts based on weak rest-frame UV absorption features complete for both red, old objects and young, blue objects. The peak epoch of galaxy assembly is now being probed by direct spectroscopic investigation for the first time. on behalf of the GDDS team I present our first results on the properties of galaxies in the ‘redshift desert’.

Type
Session VII: Ongoing and Future Studies
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Abraham, R. G., et al. 2003, Gemini Observatory Newsletter, 26, 6 Google Scholar
Abraham, R. G., et al. 2004, AJ, 127, 2455 CrossRefGoogle Scholar
Baugh, C. M., Benson, A. J., Cole, S., Frenk, C. S., & Lacey, C. 2003, in The Mass of Galaxies at Low and High Redshift, ed. Bender, R. & Renzini, A. (Heidelberg: Springer-Verlag), 91 Google Scholar
Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289 CrossRefGoogle Scholar
Chapman, S. C., Blain, A. W., Ivison, R. J., & Smail, I. R. 2003, Nature, 422, 695 Google Scholar
Chen, H., et al. 2003, ApJ, 586, 745 Google Scholar
Cimatti, A., et al. 2002, A&A, 392, 395 Google Scholar
Crampton, D., et al. 2000, SPIE, 4008, 114 Google Scholar
Cohen, J. G. 2001, AJ, 121, 2895 Google Scholar
Erb, D. K., et al. 2003, ApJ, 591, 101 CrossRefGoogle Scholar
Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950 Google Scholar
Glazebrook, K., & Bland-Hawthorn, J. 2001, PASP, 113, 197 Google Scholar
Glazebrook, K., et al. 2004, Nature, 430, 181 Google Scholar
Glazebrook, K., Peacock, J. A., Collins, C. A., & Miller, L. 1994, MNRAS, 266, 65 Google Scholar
McCarthy, P., et al. 2004, ApJL, in press, astro-ph/0408367 Google Scholar
Papovich, C., Dickinson, M., & Ferguson, H. C. 2001, ApJ, 559, 620 CrossRefGoogle Scholar
Savaglio, S., et al. 2004, ApJ, 602, 51 Google Scholar
Smail, I., et al. 2002, ApJ, 581, 844 Google Scholar
Steidel, C. C., et al. 2003, ApJ, 592, 728 Google Scholar
Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelberger, K. L. 1996, ApJ, 462, L17 CrossRefGoogle Scholar