Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-16T14:27:18.036Z Has data issue: false hasContentIssue false

Problems with the Current Cosmological Paradigm

Published online by Cambridge University Press:  23 September 2016

T. Shanks*
Affiliation:
Department of Physics, University of Durham, South Road, Durham DH1 3LE, England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We note that despite the apparent support for the ΛCDM model from the acoustic peaks of the CMB power spectrum and the SNIa Hubble diagram, the standard cosmological model continues to face several fundamental problems. First, the model continues to depend wholly on two pieces of undiscovered physics, namely dark energy and cold dark matter. Then, the implied dark energy density is so small that it is unstable to quantum correction and its size is fine-tuned to the almost impossible level of one part in ≈ 10102; it is also difficult to explain the coincidence between the dark energy, dark matter and baryon densities at the present day. Moreover, any model with a positive Λ also creates fundamental difficulties for superstring theories of quantum gravity. We also review the significant number of astrophysical observations which are now in contradiction with the ΛCDM model. on the grounds that the SNIa Hubble diagram is prone to evolutionary corrections and also that the CMB power spectrum may be contaminated by the effects of foreground ionised gas, we argue that the existence of such systematics could still allow more satisfactory, alternative, models to appear. We suggest that if H0 ≲ 50 kms--1Mpc--1 then a simpler, inflationary model with Ωbaryon = 1 might be allowed with no need for dark energy or cold dark matter. We note that the clear scale error between HST Cepheid and Tully-Fisher galaxy distances and also potential metallicity dependencies for both the Cepheid P-L relation and the SNIa Hubble diagram may mean that such a low value of H0 cannot yet be ruled out.

Type
Session VII: Ongoing and Future Studies
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Allen, P. D., & Shanks, T. 2004, MNRAS, 347, 1011 Google Scholar
Banks, T. 2001, in Strings 2000, ed. Duff, M. J., Lui, J. T., & Lu, J. (Singapore: World Scientific), 270 CrossRefGoogle Scholar
Benson, A. J., et al. 2003, ApJ, 599, 38 CrossRefGoogle Scholar
Blumenthal, G. R., Pagels, H., & Primack, J. R. 1982, Nature, 299, 37 Google Scholar
Bond, J. R., Szalay, A. S., & Turner, M. S. 1982, Phys. Rev. Lett., 48, 1636 Google Scholar
Chung, D. J. H., & Freese, K. 2000, Phys. Rev. D, 61, 023511 Google Scholar
Colin, P., Klypin, A. A., Kravtsov, A. V., & Khokhlov, A. M. 1999, ApJ, 523, 32 Google Scholar
Croom, S. M., & Shanks, T. 1999, MNRAS, 307, L17 Google Scholar
Deffayet, C., Dvali, G., & Gabadadze, G. 2002, Phys. Rev. D, 65, 044023 Google Scholar
Dvali, G., Gabadadze, G., & Porrati, M. 2000, Phys. Lett., B485, 202 Google Scholar
Dvali, G., Gruzinov, A., & Zaldarriaga, M. 2003, Phys. Ref. D, 68, 024012 Google Scholar
Efstathiou, G. 1995, MNRAS, 274, L73.Google Scholar
Eke, V. R., Cole, S. M., Frenk, C. S., & Patrick, H. J. 1998, MNRAS, 298, 1145.Google Scholar
Ferrarese, L., et al. 2000, ApJS, 128, 431.Google Scholar
Freedman, W. L., et al. 1994, ApJ, 427, 628.Google Scholar
Freese, K., & Lewis, M. 2002, Phys. Lett., B540, 1.Google Scholar
Gibson, B. K., et al. 2000, ApJ, 529, 723.Google Scholar
Giovanelli, R., et al. 1997, ApJ, 477, L1 Google Scholar
Guth, A. H. 1981, Phys. Rev. D, 23, 347 Google Scholar
Hinshaw, G., et al. 2003, ApJS, 148, 63 Google Scholar
Hoeflich, P., Nomoto, K., Umeda, H., & Wheeler, J. C. 2000, ApJ, 528, 590 Google Scholar
Hoyle, F., Shanks, T., & Tanvir, N. R. 2003, MNRAS, 345, 269 CrossRefGoogle Scholar
Kachru, S., Kallosh, R., Linde, A., & Trivedi, S. P. 2003, Phys. Rev. D, 68, 046005 Google Scholar
Kogut, A., et al. 2003, ApJS, 148, 161 Google Scholar
Lea, S. M., Silk, J., Kellogg, E., & Murray, S. 1973, ApJ, 184, L105 Google Scholar
Lloyd-Davies, E. J., Ponman, T. J., & Cannon, D. B. 2000, MNRAS, 315, L689 Google Scholar
Martel, H., Shapiro, P. R., & Weinberg, S. 1998, ApJ, 492, 29 CrossRefGoogle Scholar
Moore, B., Quinn, T., Governato, F., Stadel, J., & Lake, G. 1999a, MNRAS, 310, 1147 Google Scholar
Moore, B., et al. 1999b, ApJ, 524, 19 Google Scholar
Myers, A. D., et al. 2003, MNRAS, 342, 467 Google Scholar
Myers, A. D., Shanks, T., Outram, P. J., Frith, W. J., & Wolfendale, A. W. 2004, MNRAS, 347, L67 Google Scholar
Netterfield, , et al. 2002, ApJ, 571, 604 Google Scholar
Peebles, P. J. E. 1982, ApJ, 263, L1 CrossRefGoogle Scholar
Peebles, P. J. E. 1984, ApJ, 284, 439 Google Scholar
Peebles, P. J. E., & Ratra, B. 1988, ApJ, 325, L17 Google Scholar
Perlmutter, S., et al. 1999, ApJ, 517, 565 Google Scholar
Pierce, M. J., & Tully, R. B. 1992, ApJ, 387, 47 Google Scholar
Randall, L., & Sundrum, R. 1999, Phys. Rev. Lett., 83, 3370 Google Scholar
Riess, A. G., et al. 1998, ApJ, 116, 1009 Google Scholar
Sakai, S., et al. 1999, ApJ, 523, 540 Google Scholar
Sandage, A. R., et al. 1996, ApJ, 460, L15 CrossRefGoogle Scholar
Shanks, T. 1985, Vistas in Astronomy, 28, 595 Google Scholar
Shanks, T., et al. 1991, in Observational Tests of Cosmological Inflation, ed. Shanks, T., Banday, A. J., Ellis, R. S., Frenk, C. S., & Wolfendale, A. W. (Dordrecht: Kluwer), 205 Google Scholar
Shanks, T. 1997, MNRAS, 290, L77 Google Scholar
Shanks, T. 1999, in Harmonising Cosmic Distance Scales, ed. Egret, D. & Heck, A. (San Francisco: ASP), 230 Google Scholar
Shanks, T., et al. 2000, in IAU Symp. 201, New Cosmological Data and the Values of the Fundamental Parameters, ed. Lasenby, A. N., Jones, A. W., & Wilkinson, A. (San Francisco: ASP), in press Google Scholar
Shanks, T., Allen, P. D., Hoyle, F., & Tanvir, N. R. 2002, in ASP Conf. Ser. Vol. 283, A New Era in Cosmology, ed. Metcalfe, N. & Shanks, T. (San Francisco: ASP), 274 Google Scholar
Tanvir, N. R., Shanks, T., Ferguson, H. C., & Robinson, D. R. T. 1995, Nature, 377, 27 Google Scholar
Vauclair, S. C., et al. 2003, A&A, 412, L37 Google Scholar
Voit, G. M., Balogh, M. L., Bower, R. G., Lacey, C. G., & Bryan, G. L. 2003, ApJ, 593, 272 Google Scholar
Wetterich, C. 1988, Nucl. Phys., B302, 645 Google Scholar
Witten, E. 2002, in Clay Mathematics Proc. Vol. 1, Strings 2001, ed. Dabholkar, A., Mukhi, S., & Wadia, S. R. (New York: AMS), http://www.theory.tifr.res.in/strings/ Google Scholar