Skip to main content
×
×
Home

Genetic studies of bipolar affective disorder in large families

  • Douglas H. R. Blackwood (a1), Walter J. Muir (a1) and Peter M. Visscher (a2)
Abstract
Background

Genetic factors are known to be important in the aetiology of bipolar disorder.

Aims

To review linkage studies in extended families multiply affected with bipolar disorder.

Method

Selective review of linkage studies of bipolar disorder emphasising the gains and drawbacks of studying large multiply-affected families and comparing the statistical methods used for data analysis.

Results

Linkage of bipolar disorder to several chromosome regions including 4p, 4q, 10p, 12q, 16p, 18q, 21q and Xq has first been reported in extended families. In other families chromosomal rearrangements associated with affective illnesses provide signposts to the location of disease-related genes. Statistical analyses using variance component methods can be applied to extended families, require no prior knowledge of the disease inheritance, and can test multilocus models.

Conclusion

Studying single large pedigrees combined with variance component analysis is an efficient and effective strategy likely to lead to further insights into the genetic basis of bipolar disorders.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic studies of bipolar affective disorder in large families
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic studies of bipolar affective disorder in large families
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic studies of bipolar affective disorder in large families
      Available formats
      ×
Copyright
Corresponding author
Professor D. H. R. Blackwood, University of Edinburgh Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, Scotland, UK. Tel: +44 (0)131 537 6000; fax: +44 (0)131 537 6259; e-mail: dblackwood@ed.ac.uk
Footnotes
Hide All

Declaration of interest

This work was supported by a grant from the Chief Scientist's Office, Scottish Executive.

Footnotes
References
Hide All
Adams, L. J., Mitchell, P. B., Fielder, S. L., et al (1998) A susceptibility locus for bipolar disorder on chromosome 4q35. American Journal of Human Genetics, 62, 10841091.
Almasy, L. & Blangero, J. (1998) Multipoint quantitative trait linkage analysis in general pedigrees. American Journal of Human Genetics, 62, 11981211.
Armstrong, C., Marshall, D., Todd, R. D., et al (1997) An initial report of a genome screen for a bipolar I disorder susceptibility locus in a large multiplex kindred of Swiss ancestry. American Journal of Medical Genetics (Neuropsychiatric Genetics), 74, 586.
Asherson, P., Mant, R., Williams, N., et al (1998) A study of chromosome 4p markers and dopamine D5 receptor gene in schizophrenia and bipolar disorder. Molecular Psychiatry, 3, 310320.
Barden, N., Plante, M., Rochette, D., et al (1996) Genome wide microsatellite marker linkage study of bipolar affective disorder in a very large pedigree derived from a homogeneous population in Quebec points to a susceptibility locus on chromosome 12. Psychiatric Genetics, 6, 145146.
Blackwood, D. H. R., He, L., Morris, S. W., et al (1996) A locus for bipolar affective disorder on chromosome 4p. Nature Genetics, 12, 427430.
Blackwood, D. H. R., Fordyce, A., Walker, M., et al (1998) Thirty year follow-up of a family showing association of schizophrenia with a balanced translocation t(1:11)(q42.1,q14.3). American Journal of Medical Genetics (Neuropsychiatric Genetics), 81, 532.
Craddock, N., Owen, M., Burge, S., et al (1994) Familial cosegregation of major affective disorder and Darier's disease (keratosis follicularis). British Journal of Psychiatry, 164, 355358.
Ewald, H., Mors, O., Flint, T., et al (1995) A possible locus for manic depressive illness on chromosome 16p13. Psychiatric Genetics, 5, 7181.
Ewald, H., Degn, B., Mors, O., et al (1998a) Support for the possible locus on chromosome 4p16 for bipolar affective disorder. Molecular Psychiatry, 3, 442448.
Ewald, H., Degn, B., Mors, O., et al (1998b) Significant linkage between bipolar affective disorder and chromosome 12q. Psychiatric Genetics, 8, 131140.
Freimer, N. B., Reus, V. I., Escamilla, M. A., et al (1996) Genetic mapping using haplotype, association and linkage methods suggests a locus for severe bipolar disorder (BPI) at 18q22–q23. Nature Genetics, 12, 435441.
Ginns, E. I., Ott, J., Egeland, J. A., et al (1996) A genome wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nature Genetics, 12, 431435.
Ginns, E. I., St Jean, P., Philibert, R. A., et al (1998) A genome-wide search for chromosomal loci linked to mental health wellness in relatives at high risk for bipolar affective disorder among the Old Order Amish. Proceedings of the National Academy of Science, 95, 1553115536.
Hampson, R. M., Malloy, M. P., Mors, O., et al (1999) Mapping studies on a pericentric inversion (18) (P11.31 q21.1) in a family with both schizophrenia and learning disabilities. Molecular Psychiatry, 9, 161163.
LaBuda, M. C., Maldonado, M., Marshall, D., et al (1996) A follow-up report of a genome search for affective disorder predisposition loci in the old order Amish. American Journal of Human Genetics, 59, 13431362.
Millar, J. K., Wilson-Annan, J. C., Anderson, S., et al (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 14151423.
Millar, J. K., Christie, S., Anderson, S., et al (2001) Genomic structure and localisation within a linkage hotspot of Disrupted in Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Molecular Psychiatry, 6, 173178.
Morissette, J., Villeneuve, A., Dordeleau, L., et al (1999) Genome-wide search for linkage of Bipolar Affective Disorder in a very large pedigree derived from a homogeneous population in Quebec points to a locus of major effect on chromosome 12q23–24. American Journal of Medical Genetics, 88, 567587.
Mors, O., Ewald, H., Blackwood, D., et al (1997) Cytogenetic abnormalities on chromosome 18 associated with bipolar affective disorder or schizophrenia. British Journal of Psychiatry, 170, 278280.
Muir, W. J., Gosden, C. M., Brookes, A. J., et al (1995) Direct microdissection and microcloning of a translocation breakpoint region t(1; 11)(q42.2;q21) associated with schizophrenia. Cytogenetics and Cell Genetics, 70, 3540.
Pekkarinen, P., Terwilliger, J., Bredbacka, P. E., et al (1995) Evidence of a predisposing locus to bipolar disorder on Xq24–q271 in an extended Finnish pedigree. Genome Research, 5, 105115.
Risch, N. & Botstein, D. (1996) A manic depressive history. Nature Genetics, 12, 351353.
St Clair, D., Blackwood, D., Muir, W., et al (1990) Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336, 1316.
Straub, R. E., Lehner, T., Luo, Y., et al (1994) A possible vulnerability locus for bipolar affective disorder on chromosome 21q 22.3. Nature Genetics, 8, 291296.
Terwilliger, J. D. & Weiss, K. M. (1998) Linkage disequilibrium mapping of complex disease: fantasy or reality? Current Opinion in Biotechnology, 9, 578594.
Visscher, P. M., Haley, C. S., Heath, S. C., et al (1999) Detecting QTLs for uni- and bipolar disorder using a variance component method. Psychiatric Genetics, 9, 7484.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 30 *
Loading metrics...

* Views captured on Cambridge Core between 3rd January 2018 - 21st April 2018. This data will be updated every 24 hours.

Genetic studies of bipolar affective disorder in large families

  • Douglas H. R. Blackwood (a1), Walter J. Muir (a1) and Peter M. Visscher (a2)
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *