Skip to main content Accessibility help
×
Home

Partial agonism and schizophrenia

  • A. A. Bolonna (a1) and R. W. Kerwin (a1)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Partial agonism and schizophrenia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Partial agonism and schizophrenia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Partial agonism and schizophrenia
      Available formats
      ×

Abstract

  • An abstract is not available for this content so a preview has been provided below. To view the full text please use the links above to select your preferred format.

Copyright

Corresponding author

Professor R. W. Kerwin, Section of Clinical Neuropharmacology, Institute of Psychiatry, London SE5 8AF, UK. E-mail: spklrwk@iop.kcl.ac.uk

References

Hide All
Abi Dhargam, A. & Moore, H. (2003) Prefrontal dopamine transmission at Dl receptors and the pathology of schizophrenia. Neuroscientist, 5, 404416.
Andreasen, N. C., Rezai, K., Alliger, R., et al (1992) Hypofrontality in neuroleptic-naïve patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Archives of General Psychiatry, 49, 943958.
Ariens, E. J. (1964) Molecular Pharmacology. New York: Academic Press.
Ariens, E. J. & Simonis, A. M. (1964) A molecular basis for drug action. Journal of Pharmacy and Pharmacology, 16, 289296.
Ariens, E. J., Simonis, A. M. & Van Rossum, J. M. (1964) Drug–receptor interaction: interaction of one or more drugs with one receptor system. In Molecular Pharmacology (ed. E. J. Ariens), p. 171. New York: Academic Press.
Breier, A., Su, T. P., Saunders, R., et al (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proceedings of the National Academy of Sciences of the United States of America, 94, 25692574.
Burris, K. D., Molski, T. F., Xu, C., et al (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. Journal of Pharmacology and Experimental Therapeutics, 302, 381389.
Carlsson, A. & Lindqvist, M. (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacologica et Toxicologica, 20, 140144.
Carter, C. J. & Pycock, C. J. (1979) The effects of 5,7-dihydroxytryptamine lesions of extrapyramidal and mesolimbic sites on spontaneous motor behaviour, and amphetamine-induced stereotypy. Naunyn-Schmiedeberg's Archives of Pharmacology, 308, 5154.
Chio, C. L., Lajiness, M. E. & Huff, R. M. (1994) Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Molecular Pharmacology, 45, 5160.
Clark, D., Hjorth, S. & Carlsson, A. (1985) Dopamine-receptor agonists: mechanisms underlying autoreceptor selectivity. I. Review of the evidence. Journal of Neural Transmission, 62, 152.
Creese, I., Burt, D. R. & Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192, 481483.
Egan, M. F., Goldberg, T. E., Kolachana, B. S., et al (2001) Effect of COMT Val 108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 69176922.
Elsworth, J. D. & Roth, R. H. (1997) Dopamine autoreceptor pharmacology and function. In I: Dopamine Receptors (ed. R. L. Neve), pp 232265. Totowa, NJ: Humana Press.
Grunder, G., Carlsson, A. & Wong, D. (2003) Mechanisms of new antipsychotic medications. Archives of General Psychiatry, 60, 974977.
Jordan, S., Koprivica, V., Chen, R., et al (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HTIA receptor. European Journal of Pharmacology, 441, 137140.
Kapur, S. & Mamo, D. (2003) Half a century of antipsychotics and still a central role for dopamine D(2)receptors. Progress in Neuropsychopharmacology and Biological Psychiatry, 27, 10811090.
Kapur, S. & Seeman, P. (2001) Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. American Journal of Psychiatry, 158, 360369.
Kapur, S., Zipursky, R., Jones, C., et al (2000) Relationship between dopamine D2 occupancy, clinical response and side effects: a double-blind PET study of first episode schizophrenia. American Journal of Psychiatry, 157, 514520.
Kerwin, R. W. (2000) From pharmacological profiles to clinical outcomes. International Journal of Clinical Psychopharmacology, 15, S1S4.
Kerwin, R. W. & Osborne, S. (2000) Antipsychotic drugs. Medicine, 28, 2325.
Kikuchi, T., Tottori, K., Uwahodo, Y., et al (1995) 7-(4-[4-(2, 3-Dichlorophenyl)-I-piperazinyl]butyloxy)-3, 4-dihydro-2(IH)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. Journal of Pharmacology and Experimental Therapeutics, 274, 329336.
Lahti, A. C., Weiler, M. A., Corey, P. K., et al (1998) Antipsychotic properties of (–)-3-(3-hydroxyphenyl)-N-n-propylpiperidine (preclamol) in schizophrenia. Biological Psychiatry, 43, 211.
Lieberman, J. A. (2004) Dopamine partial agonists: a new class of antipsychotic. CNS Drugs, 18, 251267.
Marder, S. R., McQuade, R. D., Stock, E., et al (2003) Aripiprazole in the treatment of schizophrenia: safety and tolerability in short-term, placebo-controlled trials. Schizophrenia Research, 61, 123136.
Meltzer, H. Y. (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology, 21, s106s115.
Meltzer, H. Y., Matsubara, S. & Lee, J. C. (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin 2 p Ki values. Journal of Pharmacology and Experimental Therapeutics, 251, 238246.
Ohmori, T., Koyama, T., Inoue, T., et al (1993) B-HT 920, a dopamine D2 agonist, in the treatment of negative symptoms of chronic schizophrenia. Biological Psychiatry, 33, 687693.
Pilowsky, L., Costa, D. C., Ell, P. J., et al (1992) Clozapine, single photon emission tomography and the dopamine D2 receptor blockade hypothesis of schizophrenia. Lancet, 340, 199202.
Potkin, S. G., Saha, A. R., Kujawa, M. J., et al (2003) Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Archives of General Psychiatry, 60, 681690.
Pycock, C. J., Carter, C. J. & Kerwin, R. W. (1980a) Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on neurotransmitter systems in subcortical sites in the rat. Journal of Neurochemistry 34, 9199.
Pycock, C. J., Kerwin, R. W. & Carter, C. J. (1980b) Effect of lesions of cortical dopamine terminals on subcortical dopamine receptors in the rat. Nature, 286, 7477.
Richelson, E. (1999) Receptor pharmacology of neuroleptics: relation to clinical effects. Journal of Clinical Psychiatry, 60, 514.
Seeman, P. & Lee, T. (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic activity on dopamine neurons. Science, 188, 12171219.
Stephenson, R. P. (1956) Amodification of receptor theory. British Journal of Pharmacology, 11, 379393.
Tamminga, C. A. (2002) Partial dopamine agonists in the treatment of psychosis. Journal of Neural Transmission, 109, 411420.
Thierry, A. M., Stinus, L., Blanc, G., et al (1973) Some evidence for the existence of dopaminergic neurons in the rat cortex. Brain Research, 50, 230234.
Weinberger, D. R. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660669.
Weinberger, D. R. & Berman, K. F. (1996) Prefrontal function in schizophrenia: confounds and controversies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 14951503.
Weinberger, D. R., Berman, K. F. & Illowsky, B. P. (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Archives of General Psychiatry, 45, 609615.
Wetzel, H., Hillert, A., Grunder, G., et al (1994) Roxindole, a dopamine autoreceptor agonist, in the treatment of positive and negative schizophrenic symptoms. American Journal of Psychiatry, 151, 14991502.

Partial agonism and schizophrenia

  • A. A. Bolonna (a1) and R. W. Kerwin (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Partial agonism and schizophrenia

  • A. A. Bolonna (a1) and R. W. Kerwin (a1)
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *