Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T02:55:21.681Z Has data issue: false hasContentIssue false

Comparison of three different scales techniques for the dynamic mechanical characterization of two polymers (PDMS and SU8)

Published online by Cambridge University Press:  08 July 2009

J. Le Rouzic
Affiliation:
FEMTO-ST, Dép. MN2S, CNRS UMR 6174, Université de Franche-Comté, 32 avenue de l'Observatoire, 25044 Besançon Cedex, France
P. Delobelle*
Affiliation:
FEMTO-ST, Dép. Mécanique Appliquée, CNRS UMR 6174, Université de Franche-Comté, 24 chemin de l'Épitaphe, 25000 Besançon, France
P. Vairac
Affiliation:
FEMTO-ST, Dép. MN2S, CNRS UMR 6174, Université de Franche-Comté, 32 avenue de l'Observatoire, 25044 Besançon Cedex, France
B. Cretin
Affiliation:
FEMTO-ST, Dép. MN2S, CNRS UMR 6174, Université de Franche-Comté, 32 avenue de l'Observatoire, 25044 Besançon Cedex, France
Get access

Abstract

In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic mechanical analysis, nanoindentation and the scanning microdeformation microscope have been presented. The methods are hereby explained, extended for viscoelastic behaviours, and their compatibility underlined. The storage and loss moduli of these polymers over a wide range of frequencies (from 0.01 Hz to some kHz) have been measured. These techniques are shown fairly matching and the two different viscoelastic behaviours of these two polymers have been exhibited. Indeed, PDMS shows moduli which still increase at 5 kHz whereas SU8 ones decrease much sooner. From a material point of view, the Havriliak and Negami model to estimate instantaneous, relaxed moduli and time constant of these materials has been identified.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rabe, U., Arnold, W., Appl. Phys. Lett. 64, 1493 (1994) CrossRef
Burnham, N.A., Kulik, A.J., Gremaud, G., Gallo, P.J., Ouveley, F., J. Vac. Sci. Technol. B 14, 794 (1996) CrossRef
Kolosov, O., Yamanaka, K., Jpn J. Appl. Phys. 32, L1095 (1993) CrossRef
E. Chilla, T. Hesjedal, H.J. Frohlich, Proc. IEEE Ultrasonics Symposium (1994), pp. 363–366
B. Cretin, P. Vairac, Proc. Int. Seminar on Quantitative Microscopy (PTB-F21, Braunshweig, 1995), pp. 22–26
Vairac, P., Cretin, B., Appl. Phys. A-Mater. Sci. Process. 66, 235 (1998) CrossRef
Dupas, E., Gremaud, G., Kulik, K., Loubet, J.L., Rev. Sci. Instrum. 72, 3891 (2001) CrossRef
Oliver, W.C., Pharr, G.M., J. Mater. Res. 7, 1563 (1992) CrossRef
Oliver, W.C., Pharr, G.M., J. Mater. Res. 19, 3 (2004) CrossRef
Li, X., Bhushan, B., Mater. Charact. 48, 11 (2002) CrossRef
White, C.C., Vanlandingham, M.R., Drzal, P.L., Chang, N.-K., Chang, S.H., J. Polym. Sci. B 43, 1812 (2005) CrossRef
Sthal, F., Cretin, B., Appl. Phys. Lett. 62, 829 (1993)
Vairac, P., Cretin, B., Appl. Phys. Lett. 68, 461 (1996) CrossRef
Walberer, J.A., McHugh, A.J., J. Rheol. 45, 187 (2001) CrossRef
Mata, A., Fleischman, A.J., Roy, S., Biomed. Microdev. 7, 281 (2005) CrossRef
Roure, O., Saez, A., Buguin, A., Austin, R., Chavrier, P., Siberzan, P., Ladoux, B., Proc. Natl Acad. Sci. 102, 2390 (2005) CrossRef
Schneider, F., Fellner, T., Wilde, J., Wallrabe, U., J. Micromech. Microeng. 18, 065008 (2008) CrossRef
Al-Halhouli, A.T., Kampen, I., Krah, T., Buttgenbach, S., J. Microelectr. Eng. 85, 942 (2008) CrossRef
Cretin, B., Vairac, P., Appl. Phys. Lett. 71, 2082 (1997) CrossRef
Vairac, P., Cretin, B., Opt. Commun. 132, 19 (1996) CrossRef
P. Variac, B. Cretin, in Applied Scanning Probe Methods II, edited by B. Bhushan, H. Fuchs (Berlin, Springer, 2006), pp. 241–281
Mahaffy, R.E., Shih, C.K., MacKintosh, F.C., Kas, J., Phys. Rev. Lett. 85, 880 (2000) CrossRef
Le Rouzic, J., Vairac, P., Cretin, B., Delobelle, P., Rev. Sci. Instrum. 79, 033707 (2008) CrossRef
Arinéro, R., Lévêque, G., Girard, P., Ferrandis, J.Y., Rev. Sci. Instrum. 78, 023703 (2007) CrossRef
Y.M. Haddad, Viscoelasticity of Engineering Materials (Chapman and Hall, London, 1995)
Vairac, P., Cretin, B., Surf. Inter. Anal. 27, 588 (1999) 3.0.CO;2-X>CrossRef
D. Tabor, The hardness of metals (Clarendon Press, Oxford, 1951)
Loubet, J.L., Georges, J.M., Marchesini, O., J. Tribol. 106, 43 (1984) CrossRef
Doerner, M.F., Nix, W.D., J. Mat. Res. 1, 601 (1986) CrossRef
Briscoe, B.J., Fiori, L., Pelillo, E., J. Phys. D Appl. Phys. 31, 2395 (1998) CrossRef
Roche, S., Pavan, S., Loubet, J.L., Barbeau, P., Magny, B., Prog. Org. Coat. 47, 37 (2003) CrossRef
Loubet, J.L., Oliver, W.C., Lucas, B.N., J. Mat. Res. 15, 1195 (2000) CrossRef
K.P. Merard, Dynamic Mechanical Analysis, A Practical Introduction (CRC Press LLC, USA, 1999)
Cunat, C., Rev. Therm. 35, 680 (1996) CrossRef
Havriliak, S., Negami, S., J. Polym. Sci. Part C 14, 99 (1966) CrossRef
Cole, K.S., Cole, R.H., J. Chem. Phys. 9, 341 (1941) CrossRef
Davidson, D.W., Cole, R.H., J. Chem. Phys. 18, 1417 (1950) CrossRef
J.M. Hiver, private communication (2008)