Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T22:11:59.528Z Has data issue: false hasContentIssue false

Light transmission measurement of solute dispersion in non-Brownian suspension flow

Published online by Cambridge University Press:  06 January 2014

Alejandro Boschan*
Affiliation:
Grupo de Medios Porosos and CONICET, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
Mariana Poblete*
Affiliation:
Grupo de Medios Porosos and CONICET, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
Yanina Lucrecia Roht
Affiliation:
Grupo de Medios Porosos and CONICET, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
Irene Ippolito
Affiliation:
Grupo de Medios Porosos and CONICET, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
Ricardo Chertcoff
Affiliation:
Grupo de Medios Porosos and CONICET, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
*
Get access

Abstract

We characterize and employ a light transmission technique to measure the dispersivity of a solute in the flow of a neutrally-buoyant non-Brownian spherical particle suspension in a Hele-Shaw cell (parallelplate axial flow). Particle radii (a) were 20 and 40 μm, the particle bulk volume fraction ϕbulk was 0.2, and the cell aperture was 420 ± 10 μm. In each displacement experiment a suspension with a colouring solute displaces a transparent one at constant flow rates ranging from 0.721 to 0.928 mL/min (corresponding to solute Péclet numbers (Pes) between 350 and 450). A reference measurement, identical to the displacement ones but without particles in the flow (ϕbulk = 0), were performed in the same experimental assembly for comparison purposes. A light calibration related the transmitted intensity I to the solute concentration c for each combination of ϕbulk and a. The time variation of the solute concentration was found to be well-fitted by the solution of the advection-dispersion equation (ADE) in the range of Pes studied, and consequently a dispersion coefficient D and a dispersivity ld of the solute were measured.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Frank, M., Anderson, D., Weeks, E., Morris, J.F., J. Fluid Mech. 493, 363 (2003)CrossRef
Hampton, R.E., Mammoli, A.A., Graham, A.L., Tetlow, N., Altobelli, S.A., J. Rheol. 41, 621 (1997)CrossRef
Ovarlez, G., Bertrand, F., Rodts, S., J. Rheol. 50, 259 (2006)CrossRef
Drazer, G., Koplik, J., Khusid, B., Acrivos, A., J. Fluid Mech. 511, 237 (2004)CrossRef
Lo, T.S., Koplik, J., Phys. Fluids 24, 053303 (2012)
National Academy of Sciences, Rock fractures, fluid flow: Contemporary understanding applications (National Academy Press Washington, DC, , 1996)
Charette, V.J., Evangelista, E., Chertcoff, R., Auradou, H., Hulin, J.P., Ippolito, I., Eur. Phys. J. Appl. Phys. 39, 267 (2007)CrossRef
Koch, D.L., Brady, J.L., J. Fluid. Mech. 154, 399 (1985)CrossRef
Auradou, H., Drazer, G., Hulin, J.P., Koplik, J., Water Resour. Res. 41, W09423 (2005)CrossRef
Boschan, A., Auradou, H., Ippolito, I., Chertcoff, R., Hulin, J.P., Water Resour. Res. 45, W03201 (2009)CrossRef
Massei, N., Lacroix, M., Wang, H.Q., Dupont, J.P., J. Contam. Hydrol. 57, 21 (2002)CrossRef
Zvikelsky, O., Weisbrod, N., Water Resour. Res. 42, WR004873 (2006)CrossRef
Reno, M.D., James, S.C., Altman, S.J., J. Colloid Interface Sci. 300, 383 (2006)CrossRef
Zheng, Q., Dickson, S.E., Guo, Y., J. Colloid Interface Sci. 339, 140 (2009)CrossRef
Roht, Y.L., Boschan, A., Ippolito, I., Chertcoff, R., J. Contam. Hydrol. 145, 10 (2013)CrossRef
Bear, J., Dynamics of Fluids in Porous Media, , edited by Dover Publications Inc. (American Elsevier Publishing, New York, 1972), p. 784Google Scholar
Aris, R., Proc. Roy. Soc. A 235, 67 (1956)CrossRef
Golay, M.J.E., Gas Chromatography (Butterworths, London, 1958)Google ScholarPubMed
Roux, S., Plouraboué, F., Hulin, J.P., Transp. Porous Media 32, 97 (1998)CrossRef
Nott, P.R., Brady, J.F., J. Fluid Mech. 275, 157 (1994)CrossRef
Phillips, R.J., Armstrong, R.C., Brown, R.A., Graham, A.L., Abbott, J.R., Physics of Fluids A: Fluid Dyn. 4, 30 (1992)CrossRef
Stickel, J.J., Powell, R.L., Annu. Rev. Fluid Mech. 37, 129 (2005)CrossRef
Drazer, G., Koplik, J., Khusid, B., Acrivos, A., J. Fluid Mech. 460, 307 (2002)CrossRef
Leighton, D., Acrivos, A., J. Fluid Mech. 181, 415 (1987)CrossRef
Lyon, M.K., Leal, L.G., J. Fluid Mech. 363, 57 (1998)CrossRef
Yapici, K., Powell, R.L., Phillips, R.J., Phys. Fluids 21, 053302 (2009)CrossRef
Horobin, R.W., Kiernan, J.A. (Eds.), Conn’s Biological Stains 10th edn. (Bios Scientific Publishers, Oxford, 2002)Google Scholar
Boschan, A., Auradou, H., Chertcoff, R., Ippolito, I., Hulin, J.P., Water Resour. Res. 43, W03438 (2007)CrossRef
Boschan, A., Ippolito, I., Chertcoff, R., Auradou, H., Hulin, J.P., Water Resour. Res. 44, W06420 (2008)CrossRef
Chatwin, P.C., Sullivan, P.J., J. Fluid Mech. 120, 347 (1982)CrossRef
James, S.C., Chrysikopoulos, C.V., J. Colloid Interface Sci. 263, 288 (2003)CrossRef
Vartuli, M., Hulin, J.P., Daccord, G., AICHE J. 41, 1622 (1995)CrossRef
Boschan, A., Charette, J., Gabbanelli, S., Ippolito, I., Chertcoff, R., Physica A 327, 49 (2003)CrossRef