Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-04T10:22:20.272Z Has data issue: false hasContentIssue false

Annealing and thickness effect on the optical absorption of Ge20Te80 and Cu6Ge14Te80 films

Published online by Cambridge University Press:  15 March 2002

H. El-Zahed*
Affiliation:
University Girls College for Arts, Science and Education, Ain Shams University, Cairo, Egypt
M. Dongol
Affiliation:
Physics Department, Faculty of Science, South Valley University, Qena, Egypt
M. Radwan
Affiliation:
Math. & Phys. Dept., Faculty of Engineering, Cairo University, Fayoum branch, Egypt
Get access

Abstract

Thin films of Ge20Te80 and Cu6Ge14Te80 of different thicknesses are deposited on glass substrate by thermal evaporation under vacuum. The effect of incorporation of copper in Ge20Te80 film is studied by measuring the optical absorption. The mechanism of optical absorption follows the rule of direct transition. The films are annealed at different elevated temperatures from 370 to 520 K. The measurements were carried on as-deposited and annealed specimens. The optical energy gap (Eg) was found to decrease with increasing the annealing temperatures in the case of Ge20Te80 films. But in the case of Cu6Ge14Te80 films, Eg first increases with annealing temperature up to 410 K, then decreases sharply after further increasing the annealing temperature above the glass transition temperature. The decreases of Eg and the increase of the width of localized states Ee could be attributed to the amorphous - crystalline transformation. The values of optical energy gap Eg are also found to increase with thickness of both two-type films. The effect of films thickness on optical energy gap (Eg) of the films is interpreted in terms of the density of state model of Mott and Davis. The refractive index n, extinction coefficient k and dielectric constant $\varepsilon_{\rm i}$ and $\varepsilon_{\rm r}$ are also calculated for all samples.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tohage, N., Minami, T., Yamamoto, Y., Tanaka, M., J. Appl. Phys. 51, 1048 (1980). CrossRef
Mehra, R., Kumer, R., Mathur, P., Thin Solid Films 170, 15 (1989). CrossRef
Vlcek, M., Tichy, L., Klikorka, L., Triska, L., J. Mater. Sci. Lett. 7, 335 (1988). CrossRef
Dehaldhar, S.K.M., Sengupta, S.P., Ind. J. Pure Appl. Phys. 17, 422 (1979).
Beyer, W., Mell, H., Stike, J., J. Phys. Stat. Sol. B 45, 153 (1971). CrossRef
Shirafuji, J., Kim, G.I., Inuishi, Y., J. Appl. Phys. 16, 67 (1977). CrossRef
Maan, A.S., Goyal, D.R., Sharma, S.K., Sharma, T.P., J. Non-Cryst. Solids 183, 186 (1995). CrossRef
N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials (Clarendon, Oxford, 1971), p. 377.
Mott, N.F., Philos. Mag. 19, 835 (1969). CrossRef
Reddy, U.K., Phys. Stat. Sol. A 89, 255 (1985). CrossRef
Stridhar, R., Venkattasubbiah, R., Majhi, J., Ramachandran, R., J. Non-Cryst. Solids 19, 331 (1990). CrossRef
Tanaka, K., Phys. Rev. B 39, 1270 (1989). CrossRef
Ligero, R.A., Gasa-Ruiza, M., Trujillo, M.P., Grozco, A., Jimenez-Garay, R., Phys. Chem. Glasses 35, 115 (1994).
Z.U. Barisova, Glassy Semiconoductor (Plenum New York, 1985), p. 463.
Ramesh, K., Asokan, S., Sangunni, K.S., Gopal, E.R.S., J. Phys. Cond. Matter 8, 2755 (1996). CrossRef
Vazquez, J., Lopez-Alemany, P., Villaresp, P., Jimenez-Garay, R., Thermochem. Acta 327, 191 (1999). CrossRef
Ramesh, K., Asokan, S., Sangunni, S., Gopal, E.S.R., Phys. Chem. Glasses 37, 270 (1996).
Nang, T., Okuda, M., Matsushita, T., Yokota, S., Suzuki, A., Jap. J. Appl. Phys. 15, 849 (1976). CrossRef
Kumar, S., Kashyap, S., Chopra, K.L., Thin Solid Films 217, 146 (1992). CrossRef
Kotkata, M.F., Kandil, K.M., Theye, M.L., J. Non-Cryst. Solids 164-166, 1259 (1993). CrossRef
A.Y. Abdel-Latief, to be published in J. Non-Cryst. Solids (2001).
S. Tolansky, Multiple Beam Interference Microscopy of Metals (Academic, London, 1970), p. 55.
Becker, M., Fan, H.Y., Phys. Rev. 76, 1530 (1949). CrossRef
T.S. Moss, Optical Properties of Semiconductors (Academic Press, New York, 1959), p. 40.
Fritzsche, H., J. Non-Cryst. Solids 6, 49 (1971). CrossRef
Davis, E.A., Mott, N.F., Philos. Mag. 22, 903 (1970). CrossRef
J. Tauc (Ed.), Amorphous and Liquid Semiconductors (Plenum, New York, 1974), p. 159.
El-Korashy, A., Abdel-Rahim, M.A., El-Zahed, H., Thin Solid Films 338, 207 (1999). CrossRef
Chaudhuri, S., Biswas, S.K., J. Non-Cryst. Solids 54, 179 (1983). CrossRef
Hasegawa, S., Yazalci, S., Shimizu, T., Solid State Commun. 26, 407 (1978). CrossRef
Hasegawa, S., Kitagawa, M., Solid State Commun. 27, 855 (1978). CrossRef
Hafiz, M.M., Rahim, M.A. Abdel, Abu-Sehly, A.A., Physica B 252, 207 (1998). CrossRef
Rahim, M.A. Abdel, J. Phys. Chem. Solids 60, 29 (1999). CrossRef
Biswas, S.K., Chaudhuri, S., Choudhury, A., Phys. Stat. Sol. 105, 467 (1988). CrossRef
Chaudhuri, S., Biswas, S.K., Choudhury, A., J. Non-Cryst. Solids 46, 171 (1981). CrossRef
El-Shair, H.T., Bekhect, A.E., J. Phys. D: Appl. Phys. 25, 1122 (1992). CrossRef
Bertran, E., Lousa, A., Varael, M., Garciacuenca, M.V. Morenza, J.L., Solar Energy Mater. 17, 55 (1988). CrossRef