Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T05:07:49.442Z Has data issue: false hasContentIssue false

Characteristic analysis and shape optimal design of a ring-type traveling wave ultrasonic motor

Published online by Cambridge University Press:  05 July 2013

Jong-Suk Ro
Affiliation:
Brain Korea 21 Information Technology, Department of Electrical Engineering, Seoul National University, 151742 Seoul, Korea
Kyung-Pyo Yi*
Affiliation:
Department of Electrical Engineering, Seoul National University, 151742 Seoul, Korea
Tae-Kyung Chung
Affiliation:
Department of Electrical and Electronics Engineering, Chung-Ang University, 456756 Seoul, Korea
Hyun-Kyo Jung
Affiliation:
Department of Electrical Engineering, Seoul National University, 151742 Seoul, Korea
Get access

Abstract

The contact mechanism should be analyzed for an estimation of the performance of a traveling wave ultra-sonic motor (TWUSM), because the operation of this type of motor depends on the frictional force between the rotor and the stator. However, the nonlinearity of the contact mechanism of the TWUSM makes it difficult to proposed a proper contact model, a characteristic analysis method and an optimal design method. To address these problems, a characteristic analysis and optimal design method using a cylindrical dynamic contact model (CDCM), an analytical method, a numerical method and an evolutionary strategy algorithm (ESA) is proposed in this research. The feasibility and usefulness of the proposed characteristic analysis and optimal design method are verified through experimental data. Furthermore, the importance of the shape of the teeth and the reason for the improvement of motor performances by the chamfering at the teeth are proposed and verified in this paper.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sashida, T., Kenjo, T., An Introduction to Ultrasonic Motors (Clarendon Press, 1993)Google Scholar
Lu, X., Hu, J., Yang, L., Zhao, C., Sens. Actuat. A Phys. 189, 504 (2010)CrossRef
Uchino, K., Giniwicz, J.R., Micromechatronics (Marcel Dekker, Inc. New York/Basel, 2002), Chap. 6Google Scholar
Shi, Y., Zhao, C., Huang, W., Sens. Actuat. A Phys. 161, 205 (2010)CrossRef
Shiyang, L., Ming, Y., Sens. Actuat. A Phys. 164, 107 (2010)CrossRef
Liu, Y., Chen, W., Liu, J., Shi, S., Sens. Actuat. A Phys. 161, 158 (2010)CrossRef
Smith, G.L., Rudy, R.Q., Polcawich, R.G., DeVoe, D.L., Sens. Actuat. A Phys. 188, 305 (2012)CrossRef
Borodinas, S., Vasiljev, P., Mazeika, D., Sens. Actuat. A Phys. (2010), http://dx.doi.org/10.1016/j.sna.2012.09.010
Iula, A., Corbo, A., Pappalardo, M., Sens. Actuat. A Phys. 160, 94 (2010)CrossRef
Maeno, T., Tsukimoto, T., Miyake, A., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39, 668 (1992)CrossRef
Liu, Y., Chen, W., Feng, P., Liu, J., Sens. Actuat. A Phys. 180, 113 (2012)CrossRef
Flynn, A.M., Tavrow, L.S., Bart, S.F., Brooks, R.A., Ehrlich, D.J., IEEE/ASME J. Microelectromech. Syst. 7, 286 (1992)
Chunsheng, Z., Ultrasonic Motors: Technologies and Applications, 1st edn. (Science Press, Beijing, 2011)Google Scholar
Flynny, A.M., Smart Mater. Struc. 7, 286 (1998)CrossRef
Pang, Y., Yang, M., Li, S., Sens. Actuat. A Phys. 173, 202 (2012)CrossRef
Zhao, C., Li, Z., Huang, W., Sens. Actuat. A Phys. 121, 494 (2005)CrossRef
Zhang, J.-T., Zhu, H., Zhou, S.-Q., Zhao, C.-S., Sens. Actuat. A Phys. 59, 11 (2012)
Lim, J.P., Rho, J.S., Yi, K.P., Seo, J.M., Jung, H.K., Smart Mater. Struc. 18, 115024 (2009)CrossRef
Qu, J., Sun, F., Zhao, C., Ultrasonic. 45, 22 (2006)CrossRefPubMed
Qu, J., Zhou, T., Ultrasonic. 41, 561 (2003)CrossRefPubMed
Wallaschek, J., Smart Mater. Struc. 7, 369 (1998)CrossRef
Wallaschek, J., J. Intell. Mater. Syst. Struct. 6, 71 (1995)CrossRef
Cao, X., Wallaschek, J., Contact Mechanics II (WIT PRESS, Southampton, 1998) pp. 5361 Google Scholar
Stork, H., Wallaschek, J., Int. J. Non-Linear Mech. 38, 143 (2003)CrossRef
Rho, J.-S., Kim, B.-J., Lee, C.-H., Joo, H.-W., Jung, H.-K., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 52, 2054 (2005)
Nakamura, K. et al., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 38, 481 (1991)CrossRef
Hirata, H., Ueha, S., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 40, 402 (1993)CrossRef
Hirata, H., Ueha, S., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 42, 225 (1995)CrossRef
Zharii, O.Y., Acoust. Phys. 39, 249 (1993)
Zharii, O.Y., J. Appl. Mech. 63, 15 (1996)CrossRef
Flynn, A.M., PhD Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1995
Hagood, N.W., McFarland, A.J., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 42, 210 (1995)CrossRef
Schmidt, J.P., Hagedorn, P., Bingqi, M., Internat. J. Non-Linear Mech. 31, 915 (1996)CrossRef
Hagedorn, P., Sattel, T., Speziari, D., Schmidt, J., Diana, G., Smart Mater. Struc. 7, 352 (1998)CrossRef
Biet, M., Giraud, F., Lemaire-Semail, B., Eur. Phys. J. Appl. Phys. 43, 123 (2008)CrossRef
Budinger, M., Rouchon, J.-F., Nogarede, B., Eur. Phys. J. Appl. Phys. 25, 57 (2004)CrossRef
Kwon, K., Loh, B.-G., Lee, D.-R., Eur. Phys. J. Appl. Phys. 40, 343 (2007)CrossRef
Giraud, F., Lemaire-Semail, B., Eur. Phys. J. Appl. Phys. 21, 151 (2003)CrossRef
Monturet, V., Nogarede, B., Eur. Phys. J. Appl. Phys. 17, 107 (2002)CrossRef
Pigache, F., Giraud, F., Lemaire-Semail, B., Eur. Phys. J. Appl. Phys. 34, 55 (2006)CrossRef
Zhang, J., Zhu, H., Zhao, C., Sens. Actuat. A Phys. 163, 510 (2010)CrossRef
Li, S., Yang, M., Sens. Actuat. A Phys. 148, 285 (2008)CrossRef
Norton, R.L., Machine Design an Integrated Approach, 3rd edn. (Pearson Prentice Hall, Pearson Education. Inc. 2006), Chap. 6 Google Scholar
Abido, M.A., Abdel-Magid, Y.L., IEEE Trans. Energy Conver. 17, 429 (2002)CrossRef