Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T20:51:42.923Z Has data issue: false hasContentIssue false

Determination of Soret coefficient and heat of transport in a binary liquid mixture using X-ray microscopy

Published online by Cambridge University Press:  15 January 2002

S. Rondot*
Affiliation:
DTI (UMR CNRS 6107) , Faculté des Sciences de Reims, BP 1039, 51687 Reims Cedex 2, France
O. Aaboubi
Affiliation:
DTI (UMR CNRS 6107) , Faculté des Sciences de Reims, BP 1039, 51687 Reims Cedex 2, France
P. Baudart
Affiliation:
DTI (UMR CNRS 6107) , Faculté des Sciences de Reims, BP 1039, 51687 Reims Cedex 2, France
D. Erre
Affiliation:
DTI (UMR CNRS 6107) , Faculté des Sciences de Reims, BP 1039, 51687 Reims Cedex 2, France
E. Mérienne
Affiliation:
DTI (UMR CNRS 6107) , Faculté des Sciences de Reims, BP 1039, 51687 Reims Cedex 2, France
J. M. Patat
Affiliation:
DTI (UMR CNRS 6107) , Faculté des Sciences de Reims, BP 1039, 51687 Reims Cedex 2, France
Get access

Abstract

With a laboratory built X-ray microscope, analysis of a thermal diffusion process in a KBr solution has been performed. A solution of a salt submitted to a constant temperature gradient gives rise to a stationary concentration gradient of the species after a few hours: this is the so called Soret effect. From the digital image of the liquid, acquired in the steady state of the process, it is easy to obtain the concentration map of the species in the solution. The average concentration profile then deduced permits to reach the value of the Soret coefficient and the heat of transport of the binary compound. X-ray radiography is an alternative powerful technique to analyse this kind of complicated phenomenon where composition matter fluxes are driven by both temperature and composition gradient.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.K. William, W.O. Philbrook,. J. Electrochem. Soc. 128, 1034 (1981).
Ma, N.Y.R., Beyerlein, A.L., J. Phys. Chem. 87, 245 (1983). CrossRef
Ecenarro, O., Madariaga, J.A., Navarro, J., Santamaria, C.M., Carrion, J.A., Saviron, J.M., Sep. Sci. Technol. 24, 555 (1989). CrossRef
H.J.V. Tyrrel, Diffusion and heat flow in liquids (Butterworths, London, 1961).
Pohl, D.W., Schwarz, S.E., Irniger, V., Phys. Rev. Lett. 31, 32 (1973). CrossRef
Thyagarajan, K., Lallemand, P., Opt. Commun. 26, 54 (1978). CrossRef
Köhler, W., Rosenauer, C., Rossmanith, P., Int. J. Thermophys. 16, 11 (1995). CrossRef
Köhler, W., Müller, B., J. Chem. Phys. 103, 4367 (1995). CrossRef
Colombani, J., Dez, H., Bert, J., Dupuy-Philon, J., Phys. Rev. E 58, 3202 (1998). CrossRef
Colombani, J., Bert, J., Dupuy-Philon, J., J. Chem. Phys. 110, 1 (1999). CrossRef
Giglio, M., Vendramini, A., Phys. Rev. Lett. 34, 561 (1975). CrossRef
Giglio, M., Vendramini, A., Phys. Rev. Lett. 38, 26 (1977). CrossRef
Kolodner, P., Williams, H., Moe, C., J. Chem. Phys. 88, 6512 (1988). CrossRef
Zhang, K.J., Briggs, M.E., Gammon, R.W., Sengers, J.V., J. Chem. Phys. 104, 6881 (1996). CrossRef
Olivier, A., Tronel-Peyroz, E., J. Chem. Phys. 78, 537 (1981).
Reith, D., Müller-Plathe, F., J. Chem. Phys. 112, 2436 (2000). CrossRef
Rondot, S., Cazaux, J., Aaboubi, O., Chopart, J.P., Olivier, A., Science 263, 1739 (1994). CrossRef
Rondot, S., Cazaux, J., Ultramicroscopy 65, 159 (1996). CrossRef
Rondot, S., Aaboubi, O., Cazaux, J., Olivier, A., J. Phys. Chem. B 101, 6695 (1997). CrossRef
Erre, D., Bourelle, E., Claude-Montigny, B., Metrot, A., Cazaux, J., Phys. Rev. B 56, 4944 (1997). CrossRef
W.M.J. Veigele, X-ray cross section compilation from 0.1 keV to 1 MeV DNA 2433F (Kaman Science corporation, Colorado, USA, 1971), Vol. I.
Tanner, C.C., Trans. Faraday Soc. 49, 61 (1953). CrossRef
L.G. Longworth, J.N. Agar, The structure of electrolyte solutions, edited by W.J. Hamer (John Wiley & Sons, 1959).