Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-17T05:41:13.862Z Has data issue: false hasContentIssue false

Evaluation of small scattering defects densities by laser scattering tomography: application to levitated glasses

Published online by Cambridge University Press:  15 July 2004

P. Gall-Borrut*
Affiliation:
Centre d'Électronique et de Micro-optoelectronique de Montpellier, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
D. Perret
Affiliation:
Commissariat à l'Énergie Atomique, Centre de Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
B. Drevet
Affiliation:
Commissariat à l'Énergie Atomique, Centre de Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
P. Falgayrettes
Affiliation:
Centre d'Électronique et de Micro-optoelectronique de Montpellier, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
L. Nativel
Affiliation:
Centre d'Électronique et de Micro-optoelectronique de Montpellier, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
M. Castagne
Affiliation:
Centre d'Électronique et de Micro-optoelectronique de Montpellier, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Get access

Abstract

A specific experimental Laser Scattering Tomography (LST) acquisition procedure is presented. It is adapted to the characterization of materials containing scattering defects ranging from 1 to 102/mm3. The technique makes it possible to obtain good resolution within a volume chosen to contain a statistically significant defect density. This method is used to show that the gas levitation technique makes it possible to significantly decrease scattering defects in glasses. In parallel, individual study of defects in such glasses is also presented.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. P. Fillard, P. Gall, J. Bonnafe, M. Castagne, T. Ogawa, Semicond. Sci. Technol. 7,
Gall, P., Fillard, J. P., Castagne, M., Weyher, J. L., Bonnafe, J., J. Appl. Phys. 64, 5161 (1988) CrossRef
P. Gall, E. Baudry, J. Bonnafé, M. Castagne, InP and related compounds, Paris, IEEE Lasers and Electro Optics Society (1993), 73
Triboulet, R., Durand, A., Gall, P., Bonnafe, J., Fillard, J. P., Krawczyk, S. K., J. Cryst. Growth 117, 227 (1992) CrossRef
J. Granier, C. Potard, Proc. 6th Eur. Symp. Materials Sciences Microgravity Conditions, ESA Symp. Series SP-256, 421 (1987)
A. Lopez, P. Baniel, P. Gall, J. Granier, Proc. SPIE 1590, 191 (1991)
Moriya, K., Ogawa, T., J. Appl. Phys. 22, L307 (1983) CrossRef
Ogawa, T., Japan. J. Appl. Phys. Lett. 25, L916 (1986) CrossRef
Katsumata, T., Okada, K., Kikuta, T., Fukada, T., Appl. Phys. A 42, 103 (1987) CrossRef
R. H. Doremus, Glass Science, 2nd edn. (New-York: John Wiley & Sons, Inc., 1994)
R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena (New-York: John Willey & Sons, Inc., 1960)
D. Perret, Ph.D thesis (Institut National des Sciences Appliquées de Lyon, 2003)