Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T00:11:51.764Z Has data issue: false hasContentIssue false

Film forming properties of electrosprayed organic heterojunctions

Published online by Cambridge University Press:  18 June 2013

M. Ali
Affiliation:
CNISM – School of Science and Technology, Camerino University, via Madonna delle Carceri, 62032 Camerino (MC), Italy Physics Department, COMSATS Institute of Information Technology, Park Road Chak Shahzad, 44000 Islamabad, Pakistan
M. Abbas
Affiliation:
Linz Institute for Organic Solar Cells, No. 69, Altenberger Strase, 4040 Linz, Austria Laboratoire IMS, UMR 5218 CNRS, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
S.K. Shah
Affiliation:
CNISM – School of Science and Technology, Camerino University, via Madonna delle Carceri, 62032 Camerino (MC), Italy
E. Bontempi
Affiliation:
Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
A. Di Cicco
Affiliation:
CNISM – School of Science and Technology, Camerino University, via Madonna delle Carceri, 62032 Camerino (MC), Italy
R. Gunnella*
Affiliation:
CNISM – School of Science and Technology, Camerino University, via Madonna delle Carceri, 62032 Camerino (MC), Italy ISM-CNR-Area di Ricerca di Tor Vergata, via del Fosso del Cavaliere 100, 00133 Roma, Italy
Get access

Abstract

We used the electrospray deposition (ESD) method to fabricate organic photovoltaic devices with poly (3-hexyl-thiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) blends of different composition ratios and different organic solvent solution, namely chloroform (CLF) and dichlorobenzene (DCB). The morphology and crystallinity of the active layers were investigated by means of atomic force microscopy (AFM), two-dimensional X-ray diffraction (XRD2) and optical absorption, spreading light on the peculiarities of the present growth technique, involving much faster solvent evaporation and film forming processes, and comparatively much more ordered strutures with less need of thermal annealing processes. The power conversion efficiency (PCE) under AM 1.5G solar simulation obtained for devices deposited from DCB as compared to those deposited from CLF, showed significant improvement, in fair agreement with what was found by the overall characterization of the physical properties.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sariciftci, N.S., Smilowitz, L., Heeger, A., Wudl, F., Science 258, 1474 (1992)CrossRef
Shaheen, S.E., Brabec, C.J., Sariciftci, S., Padinger, F., Fromherz, T., Hummelen, J.C., Appl. Phys. Lett. 78, 841 (2001)CrossRef
Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A.J., Adv. Funct. Mater. 15, 1617 (2005)CrossRef
Dou, L., You, J., Yang, J., Chen, C.-C., He, Y., Murase, S., Moriarty, T., Emery, K., Li, G., Yang, Y., Nat. Photon. 356, 2011 (2012)
Winder, C., Sariciftci, N.S., J. Mater. Chem. 14, 1077 (2004)CrossRef
Hoppe, H., Sariciftci, N.S., J. Mat. Res. Soc. 19, 1924 (2004)CrossRef
Shaheen, S.E., Radspinner, R., Peyghambarian, N., Jabbour, G.E., Appl. Phys. Lett. 79, 2996 (2001)CrossRef
Schilinsky, P., Waldauf, C., Brabec, C.J., Adv. Funct. Mater. 16, 1669 (2006)CrossRef
Hoth, C.N., Choulis, S.A., Schilinsky, P., Brabec, C.J., Adv. Mater. 19, 3973 (2007)CrossRef
Brabec, C.J., Durrant, J.R., MRS Bulletin 33, 670 (2008)CrossRef
Susanna, G., Salamandara, L., Brown, T.M., Di Carlo, A., Brunetti, F., Reale, A., Sol. Energy Mater. Sol. Cells 95, 1775 (2010)CrossRef
Hoth, C.N., Steim, R., Schilinsky, P., Choulis, S.A., Tedde, S.F., Hayden, O., Brabec, C.J., Org. Electron. 10, 587 (2009)CrossRef
Green, R., Morfa, A., Ferguson, A.J., Kopidakis, N., Rumbles, G., Shaheen, S.E., Appl. Phys. Lett. 92, 033301 (2008)CrossRef
Ishikawa, T., Nakamura, M., Fujita, K., Tsutsui, T., Appl. Phys. Lett. 84, 2424 (2004)CrossRef
Vak, D.J., Kim, S.S., Jo, J., Oh, S.H., Na, S.I., Kim, J.W., Kim, D.Y., Appl. Phys. Lett. 91, 081102 (2007)CrossRef
Kim, J.S., Chung, W.S., Kim, K., Kim, D.Y., Paeng, K.J., Jo, S.M., Jang, S.Y., Adv. Funct. Mater. 20, 3538 (2010)CrossRef
Fukuda, T., Takagi, K., Asano, T., Honda, Z., Kamata, N., Ueno, K., Shirai, H., Ju, J., Yamagata, Y., Tajima, Y., Phys. Status Solidi RRL 5, 229 (2011)CrossRef
Abbas, M., Ali, M., Shah, S.K., D’Amico, F., Postorino, P., Mangialardo, S., Guidi, M.C., Cricenti, A., Gunnella, R., J. Phys. Chem. B 115, 11199 (2011)CrossRef
Ali, M., Abbas, M., Bontempi, E., Colombi, P., Shah, S.K., Di Cicco, A., Gunnella, R., J. Appl. Phys. 110, 054515 (2011)CrossRef
Ali, M., Abbas, M., Shah, S.K., Tuerhong, R., Generosi, A., Paci, B., Hirsch, L., Gunnella, R., Org. Electron. 13, 2130 (2012)CrossRef
Swarbrick, J.C., Taylor, J.B., Ośhea, J.N., Appl. Surf. Sci. 252, 5622 (2006)CrossRef
Dam, N., Beerbom, M.M., Braunagel, J.C., Schlaf, R., Appl. Phys. 97, 24909 (2005)CrossRef
Xue, B., Vaughan, B., Poh, C.-H., Burke, K.B., Thomsen, L., Stapleton, A., Zhou, X., Bryant, G.W., Belcher, W., Dastoor, P.C., J. Phys. Chem. C 114, 15797 (2010)CrossRef
Dupuis, A., Tournebize, A., Bussire, P.-O., Rivaton, A., Gardette, J.-L., Eur. Phys. J. Appl. Phys. 56, 34104 (2011)CrossRef
Bontempi, E., Depero, L.E., Thin Solid Films 450, 183 (2004)CrossRef
Swinnen, A., Haeldermans, I., Vanlaeke, P., D’Haen, J., Poortmans, J., D’Olieslaeger, M., Manca, J.V., Eur. Phys. J. Appl. Phys. 36, 251 (2006)CrossRef
Kim, Y.S., Lee, Y., Kim, J.K., Seo, E.-O., Lee, E.-W., Lee, W., Han, S.-H., Lee, S.-H., Current Appl. Phys. 10, 985 (2010)CrossRef
Clark, J., Silva, C., Friend, R.H., Spano, F.C., Phys. Rev. Lett. 98, 206406 (2007)CrossRef
Abbas, M., D’Amico, F., Ali, M., Mencarelli, I., Setti, L., Bontempi, E., Gunnella, R., J. Phys. D: Appl. Phys. 43, 035103 (2010)CrossRef
Moulé, J., Meerholz, K., Adv. Mater. 20, 240 (2008)CrossRef