Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-22T06:37:48.868Z Has data issue: false hasContentIssue false

Impact ionization coefficients of 4H- and 6H-SiC

Published online by Cambridge University Press:  23 October 2012

C.C. Sun*
Affiliation:
Centre for Diploma Programmes, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
A.H. You
Affiliation:
Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
E.K. Wong
Affiliation:
Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
*
Get access

Abstract

The Monte Carlo (MC) simulation of electron and hole impact ionization rates for 4H- and 6H-SiC in high electric field is presented. This work focuses on the study of impact ionization rates and impact ionization coefficients since these parameters play a very important role in determining the device performance. In our simulation, the impact ionization rates are obtained by using modified Keldysh equation with a softness factor fitted to the experimental data described by other researchers. The electron and hole impact ionization coefficients in 4H- and 6H-SiC are parameterized at high electric field. The electron and hole impact ionization coefficients for a wide range of electric fields have been successfully derived in our model.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chalabi, D., Saidane, A., Idrissi-Benzohra, M., Benzohra, M., Microelectronics 20, 891 (2009)CrossRef
Pérez, R., Tournier, D., Tomás, A.P., Godignon, P., Mestres, N., Millán, J., IEEE Trans. Electron Devices 52, 2309 (2005)CrossRef
Hatakeyama, T., Watanabe, T., Shinohe, T., Kojima, K., Arai, K., Sano, N., Appl. Phys. Lett. 85, 1380 (2004)CrossRef
Nilsson, H.E., Hjelm, M., Frojdh, C., Persson, C., Sannemo, U., Petersson, C.S., J. Appl. Phys. 86, 965 (1999)CrossRef
Ng, B.K., Yan, F., David, J.P.R., Tozer, R.C., Rees, G.J., Qin, C., Zhao, J.H., IEEE Photon. Technol. Lett. 14, 1342 (2002)CrossRef
Yan, F., Qin, C., Zhao, J.H., Bush, M., Olsen, G., Ng, B.K., David, J.P.R., Tozer, R.C., Weiner, M., Solid-State Electron. 47, 241 (2003)CrossRef
Chung, H.J., Polyakov, A.Y., Huh, S.W., Nigam, S., Skowronski, M., Fanton, M.A., Weiland, B.E., Snyder, D.W., J. Appl. Phys. 97, 084913 (2005)CrossRef
Syväjärvi, M., Yakimova, R., Tuominen, M., Kakanakov-Georgieva, A., MacMillan, M.F., Henry, A., Wahab, Q., Janzén, E., J. Cryst. Growth 197, 155 (1999)CrossRef
Liu, H.D., Guo, X., McIntosh, D., Campbell, J.C., IEEE Photon. Technol. Lett. 18, 2508 (2006)CrossRef
Sankin, V.I., Monakhov, A.M., Shkrebiy, P.P., Mater. Science Forum 556–557, 431 (2007)CrossRef
Konstantinov, A.O., Wahab, Q., Nordell, N., Lindefelt, U., Appl. Phys. Lett. 71, 90 (1997)CrossRef
Zhao, J.H., Gruzinskis, V., Luo, Y., Weiner, M., Pan, M., Shiktorov, P., Starikov, E., Semicond. Sci. Technol. 15, 1093 (2000)CrossRef
Akturk, A., Goldsman, N., Potbhare, S., Lelis, A., J. Appl. Phys. 105, 0337031 (2009)CrossRef
Thornber, K.K., J. Appl. Phys. 52, 279 (1981)CrossRef
Hsing, E.H.S., Gray, J.L., Microelectronics 30, 1 (1999)CrossRef
Loh, W.S., Ng, B.K., Ng, J.S., Soloviev, S.I., Cha, H.Y., Sandivk, P.M., Johnson, C.M., David, J.P.R., IEEE Trans. Electron Devices 55, 1984 (2008)CrossRef
Raynaud, C., Tournier, D., Morel, H., Planson, D., Diamond Relat. Mater. 19, 1 (2010)CrossRef
Sun, C.C., You, A.H., Wong, E.K., AIP Conf. Proc. 1250, 281 (2010)CrossRef
Sun, C.C., You, A.H., Wong, E.K., AIP Conf. Proc. 1328, 277 (2011)CrossRef
You, A.H., Cheang, P.L., Microelectron. Reliab. 48, 547 (2008)CrossRef
You, A.H., Ong, D.S., Jpn J. Appl. Phys. 43, 7399 (2004)CrossRef
Ivanov, P.A., Chelnokov, V.E., Semicond. Sci. Technol. 7, 863 (1992)CrossRef