Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T22:56:36.625Z Has data issue: false hasContentIssue false

Influence of doping and doping level on magnetoelectric coupling in layered composites Tb1-xDyxFe2-y/Ba-Ti1-zMzO3+δ (M = Fe, Cr, Mn, Co)

Published online by Cambridge University Press:  17 May 2010

N. Zhang*
Affiliation:
Magnetoelectronic Lab, Nanjing Normal University, Nanjing, 210097, P.R. China
J. F. Fan
Affiliation:
Magnetoelectronic Lab, Nanjing Normal University, Nanjing, 210097, P.R. China
H. X. Cao
Affiliation:
Magnetoelectronic Lab, Nanjing Normal University, Nanjing, 210097, P.R. China
J. J. Wei
Affiliation:
Magnetoelectronic Lab, Nanjing Normal University, Nanjing, 210097, P.R. China
Get access

Abstract

Perovskites BaTi1-zMzO3+δ (M = Fe, Cr, Mn, Co) has been sol-gel synthesized. Their transformation point of ferroelectric to paraelectric and the latent heat of the transformation were found a little lower than those for pure BaTiO3 (BTO), respectively. Layered composites Tb1-xDyxFe2-y–BaTi1-zMzO3+δ have been fabricated. Their magnetoelectric (ME) effect has been investigated. All the bilayers containing the doped BTO displayed a stronger ME effects than that containing pure BTO does. The bilayer Tb1-xDyxFe2-y–BaTi0.99Cr0.01O3+δ was observed to show a larger ME coupling in the composites containing other doped BTO. While Tb1-xDyxFe2-y–BaTi0.985Fe0.015O3+δ showed the largest ME effects in the bilayers Tb1-xDyxFe2-y–BaTi1-zFezO3+δ (0 ≤ z ≤ 0.02). Additionally, the ME voltage coefficient for the trilayers Tb1-xDyxFe2-y–BaTi0.99M0.01O3+δ–Tb1-xDyxFe2-y was observed to be two or three times larger than that observed in the bilayers composed by the same substances. Theoretical analyses have been given for these observations. All the results suggest that the doped BTO can be a new choice of piezoelectrics in fabricating layered ME composites.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busch-Vishniac, I.J., Phys. Today 51, 28 (1998) CrossRef
Fujimura, N., Ishida, T., Yoshimura, T., Ito, T., Appl. Phys. Lett. 69, 1011 (1996) CrossRef
Lottermoser, T., Lonkai, T., Amann, U., Hohlwein, D., Ihringer, J., Fiebig, M., Nature 430, 541 (2004) CrossRef
Lorenz, B., Litvinchuk, A.P., Gospodinov, M.M., Chu, C.W., Phys. Rev. Lett. 92, 087204 (2004) CrossRef
Filippetti, A., Hill, N.A., Phys. Rev. B 65, 195120 (2002) CrossRef
van den Boomgaard, J., Born, R.A.J., J. Mater. Sci. 13, 538 (1978) CrossRef
van den Boomgaard, J., Van Run, A.M.J.G., Van Suchetelene, J., Ferroelectrics 10, 295 (1976) CrossRef
Srinivasan, G., DeVreugd, C.P., Flattery, C.S., Laletsin, V.M., Paddubnaya, N., Appl. Phys. Lett. 85, 2550 (2004) CrossRef
Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Bokhan, Yu.I., Laletin, V.M., Phys. Rev. B 64, 214408 (2001) CrossRef
Wan, J.G., Wang, X.W., Wu, Y.J. et al., Appl. Phys. Lett. 86, 122501 (2005) CrossRef
Mori, K., Wuttig, M., Appl. Phys. Lett. 81, 100 (2002) CrossRef
Wan, J.G., Liu, J.M., Chand, H.L.W. et al., J. Appl. Phys. 93, 9916 (2003) CrossRef
Dong, S., Li, J.F., D.Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 10 (2003)
Nan, C.W., Phys. Rev. B 50, 6082 (1994) CrossRef
Harshe, G., Dougherty, J.P., Newnham, R.E., Int. J. Appl. Electromagn. Mater. 4, 145 (1993)
Bichurin, M.I., Petrov, V.M., Srinivasan, G., Phys. Rev. B 68, 054402 (2003) CrossRef
Brown, W.F., Hornreich, R.M., Shtrikman, S., Phys. Rev. 168, 574 (1968) CrossRef
Wan, J.G., Liu, J.-M. et al., J. Appl. Phys. 93, 9916 (2003) CrossRef
Ren, X., Kazuhiro Otsuka, Phys. Rev. Lett. 85, 1016 (2004) CrossRef
Ren, X., Nat. Mater. 3, 91 (2004) CrossRef
Zhang, L.X., Chen, W., Ren, X., Appl. Phys. Lett. 85, 5658 (2004) CrossRef
Zhang, L.X., Ren, X., Phys. Rev. B 71, 174108 (2005) CrossRef
Zhang, L.X., Ren, X., Phys. Rev. B 73, 094121 (2006) CrossRef
Zhang, N., Ding, W.P., Guo, Z.B. et al., Phys. Lett. A 219, 319 (1996) CrossRef
Bichurin, M.I., Petrov, V.M., Srinivasan, G., Phys. Rev. B 68, 054402 (2003) CrossRef
Kay, H.F., Vellard, H.J., Vousden, P., Nature 163, 636 (1949) CrossRef
Harada, J., Pedersen, T., Barnea, Z., Acta Cryst. B 26, 336 (1970) CrossRef
Buscaglia, M.T., Buscaglia, V., Viviani, M., Nanni, P., Hanuskova, M., J. Eur. Ceram. Soc. 20, 1997 (2000) CrossRef
Chan, H.M., Harmer, M.P., Smyth, D.M., J. Am. Ceram. Soc. 69, 507 (1986) CrossRef
Shaikh, A.S., Vest, R.W., J. Am. Ceram. Soc. 69, 689 (1986) CrossRef
Xue, L.A., Chen, Y., Brook, R.J., Mater. Sci. Eng. B 1, 193 (1988) CrossRef
Belous, A.G., V'yunov, O.I., Khomenko, B.S., Inorg. Mater. 34, 597 (1998)
Buessem, W.R., Kahn, M., J. Am. Ceram. Soc. 54, 458 (1971) CrossRef
Kurata, N., Kuwabara, M., J. Am. Ceram. Soc. 76, 1605 (1993) CrossRef
Zhang, N., Dekai Liang, T. Schneider, G. Srinivasan, J. Appl. Phys. 101, 083902 (2007) CrossRef
Bayrashev, A., Robbins, W.P., Ziaie, B., Sens. Actuat. A 114, 244 (2004) CrossRef