Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T14:06:29.968Z Has data issue: false hasContentIssue false

Influence of the pulse number and fluence of a nanosecond laser on the ablation rate of metals, semiconductors and dielectrics

Published online by Cambridge University Press:  10 June 2009

I. Vladoiu*
Affiliation:
Physics Department, Faculty of Applied Sciences, University “Politehnica" of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
M. Stafe
Affiliation:
Physics Department, Faculty of Applied Sciences, University “Politehnica" of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
C. Negutu
Affiliation:
Physics Department, Faculty of Applied Sciences, University “Politehnica" of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
I. M. Popescu
Affiliation:
Physics Department, Faculty of Applied Sciences, University “Politehnica" of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
Get access

Abstract

We investigated the pulsed laser ablation of metallic (Al), semiconductor (Si), and wide bandgap dielectric (LiNbO3) targets in air at normal atmospheric conditions by using 4.5 ns pulses at 532 nm wavelength. We determined the dependence of the ablation rate on the pulse number and laser fluence. The number of consecutive laser pulses hitting the target on the same area was between 5 and 40, and the laser fluence was varied in the range of 10–250 J/cm2 by changing the irradiated area at the target surface. We find that the ablation rate of the three targets is approximately constant when the pulse number is smaller than 15. Further increase of the pulse number leads to a decrease of the ablation rate, the fastest decrease of the ablation rate with pulse number being observed for the dielectric target. The dependence of the ablation rate on the laser fluence indicates two different regimes. In the first regime, which is for values of the fluence smaller than the threshold value (~70 J/cm2 for Al, ~90 J/cm2 for Si, and ~180 J/cm2 for LiNbO3), the ablation rate increases approximately logarithmically with the fluence. In the second regime, characterized by values of the fluence greater than the threshold value, there is a steep increase of the ablation rate. This sudden jump of the ablation rate at the threshold fluence is due to the transition from normal vaporisation to phase explosion, and to the changes in the dimensionality of the plasma-plume hydrodynamics from one-dimensional to three-dimensional.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. Bauerle, Laser processing and chemistry (Springer-Verlag, Berlin, Heidelberg, New York, 2000)
I.M. Popescu et al., Aplicatii ale laserelor, (Tehnica, Bucharest, 1979), in Romanian
M. von Allemen, A. Blatter, Laser-Beam Interaction with Materials (Springer-Verlag, Berlin, Heidelberg, 1995)
D. Bauerle (Ed.), Laser Processing and Diagnostics, Proc. Int. Conf., University of Linz, Austria, in Springer Series Chem. Phys. 39 (Springer-Verlag, Berlin, 1984)
J.F. Ready, Effects of High-power Laser Radiation (Academic Press, New York, London, 1971)
I. Ursu, I.N. Mihailescu, A.M. Prokhorov, V.I. Konov, Interactiunea radiatiei laser cu metalele (Editura Academiei R.S.R., Bucharest, 1986), in Romanian
Simon, P., Ihlemann, J., Appl. Phys. A 63, 505 (1996) CrossRef
Laser Ablation and Desorption. Experimental Methods in the Physical Sciences, Vol. 30, edited by J.C. Miller, R.F. Haglund (Academic Press, New York, 1998)
Anisimov, S.I., Lukyanchuk, B.S., Physics-Uspekhi 45, 293 (2002) CrossRef
Laser ionization mass analysis, edited by A. Vertes, R. Gijbels, F. Adams (John Wiley & Sons, New York, 1993)
Stafe, M., Vladoiu, I., Popescu, I.M., Cent. Eur. J. Phys. 6, 327 (2008)
Bulgakova, N.M., Bulgakov, A.V., Appl. Phys. A 73, 199 (2001) CrossRef
Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., J. Phys. B 32, R131 (1999) CrossRef
Amoruso, S., Armenante, M., Berardi, V., Bruzzese, R., Spinelli, N., Velotta, R., Appl. Phys. A 65, 265 (1997) CrossRef
Wolff-Rottke, B., Ihlemann, J., Schmidt, H., Appl. Phys. A 60, 131 (1995) CrossRef
Bogaerts, A., Chen, Z., Spectrochim. Acta B 60, 1280 (2005) CrossRef
Stafe, M., Negutu, C., Popescu, I.M., Shock Waves 14, 123 (2005) CrossRef
Stafe, M., Negutu, C., Popescu, I.M., Appl. Surf. Sci. 253, 6353 (2007) CrossRef
Garrison, B., Itina, T., Zhigilei, L., Phys. Rev. E 68, 041501 (2003) CrossRef
Gamaly, E.G., Rode, A.V., Perrone, A., Zocco, A., Appl. Phys. A 73, 143 (2001) CrossRef
Chichkov, B.N., Momma, C., Nolte, S., von Alvensleben, F., Tunnermannet, A., Appl. Phys. A 63, 109 (1996) CrossRef
Wynne, A.E., Stuart, B.C., Appl. Phys. A 76, 373 (2003) CrossRef
Klimentov, S.M., Garnov, S.V., Konov, V.I., Kononenko, T.V., Pivovarov, P.A., Tsarkova, O.G., Breitling, D., Dausinger, F., Phys. Wave Phenomena 15, 1 (2007) CrossRef
Porneala, C., Willis, D.A., Appl. Phys. Lett. 89, 211121 (2006) CrossRef
Fishburn, J.M., Withford, M.J., Coutts, D.W., Piper, J.A., Appl. Opt. 43, 6473 (2004) CrossRef
Knowles, M.H.R., Rutterford, G., Karnakis, D., Ferguson, A., Int. J. Adv. Manuf. Technol. 33, 95 (2007) CrossRef
Semerok, A., Chaleard, C., Detalle, V., Lacour, J.L., Mauchien, P., Meynadier, P., Nouvellon, C., Salle, B., Palianov, P., Perdrix, M., Petite, G., Appl. Surf. Sci. 138-139, 311 (1999) CrossRef
CRC Handbook of Chemistry and Physics, 82nd edn. (CRC Press, Boca Raton, FL, 2001)
Lu, Q., Phys. Rev. E 67, 016410 (2003) CrossRef
Cowpe, J.S., Astin, J.S., Pilkington, R.D., Hill, A.E., Spectrochim. Acta Part B: At. Spectrosc. 63, 1066 (2008) CrossRef
Gordillo-Vazquez, F.J., Perea, A., Chaos, J.A., Gonzalo, J., Afonso, C.N., Appl. Phys. Lett. 78, 7 (2001) CrossRef