Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-26T14:50:39.845Z Has data issue: false hasContentIssue false

Investigations of the EPR parameters and local structures for the substitutional Cu2+ centers in the tungstates

Published online by Cambridge University Press:  23 April 2010

H.-M. Zhang
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
S.-Y. Wu*
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China
P. Xu
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
L.-L. Li
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
S.-X. Zhang
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Get access

Abstract

The high order perturbation formulas of the electron paramagnetic resonance (EPR) parameters (the g factors and the hyperfine structure constants) are established for a 3d9 ion in orthorhombically compressed octahedra. These formulas are applied to the investigations of the EPR spectra and local structures for the substitutional Cu2+ centers in the wolframite-type tungstates AWO4 (where A = Cd, Zn, Mg). Based on the studies, the [CuO6]10- clusters are found to experience the local planar bond length variations δR' (≈0.096, 0.021 and 0.028 Å for CdWO4, ZnWO4 and MgWO4, respectively) along X and Y-axes. These values are quite different from the host planar bond length variations δR (≈0.013, 0.069 and 0.005 Å) for the A2+ sites in the pure tungstates. The above local bond length variations in the impurity centers can be attributed to the Jahn-Teller effect and size mismatching substitution. The theoretical EPR parameters based on the above local structures agree well with the experimental data. By adopting the uniform theoretical formulas and fewer adjustable parameters in this work, the improvements are achieved for the EPR parameters as compared with the previous calculation results.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Edison, T.A., Nature (London) 53, 470 (1896)
Chen, W., Inagawa, Y., Omatsu, T., Tateda, M., Takeuchi, N., Usuki, Y., Opt. Commun. 194, 401 (2001) CrossRef
Lecoq, P., Dafinei, I., Auffray, E. et al., Nucl. Instrum. Meth. Phys. Res. A 365, 291 (1995) CrossRef
Ishii, M., Kobayashi, M., Prog. Cryst. Growth Charact. Mater. 23, 245 (1992) CrossRef
Panchal, V., Garg, N., Chauhan, A.K., Sangeeta, B., Sharma, S. M., Solid State Commun. 130, 203 (2004) CrossRef
Itoh, M., Katagiri, T., Aoki, T., Fujita, M., Radiat. Meas. 42, 545 (2007) CrossRef
Lacomba-Perales, R., Errandonea, D., Martinez-Garcia, D., Rodríguez-Hernández, P., Radescu, S., Mujica, A., Muñoz, A., Chervin, J.C., Polian, A., Phys. Rev. B 79, 094105 (2009) CrossRef
Kraus, H., Mikhailik, V.B., Vasylechko, L., Day, D., Hutton, K.B., Telfer, J., Prots, Y., Phys. Stat. Sol. A 204, 730 (2007) CrossRef
Choi, G.K., Kim, J.R., Sung, H.Y., Kug, S.H., J. Eur. Ceram. Soc. 27, 3063 (2007) CrossRef
Errandonea, D., Manjón, F.J., Garro, N., Rodríguez-Hernández, P., Radescu, S., Mujica, A., Muñoz, A., Tu, C.Y., Phys. Rev. B 78, 054116 (2008) CrossRef
Zang, J.C., Wu, S.H., Ma, Y., Chin. Phys. 12, 375 (1992)
Lacomba-Perales, R., Ruiz-Fuertes, J., Errandonea, D., Martínez-García, D., Segura, A., EPL 83, 37002 (2008) CrossRef
Nagirnyi, V., Jönsson, L., Kirm, M., Kotlov, A., Lushchik, A., Martinson, I., Watterich, A., Zadneprovski, B.I., Radiat. Meas. 38, 519 (2003) CrossRef
Reynolds, M.L., Hagston, W.E., Garlick, G.F.J., Phys. Stat. Sol. B 30, 735 (1968) CrossRef
Yang, F.G., Tu, C.Y., Mater. Lett. 61, 3056 (2007) CrossRef
Sroubek, Z., Zdansky, K., J. Chem. Phys. 44, 3078 (1965) CrossRef
Ruiz-Fuertes, J., Errandonea, D., Segura, A., Manjón, F.J., Zhu, Z., Tu, C.Y., High Pressure Res. 28, 565 (2008) CrossRef
Abraham, Y., Holzwarth, N.A.W., Williams, R.T., Phys. Rev. B 62, 1733 (2000) CrossRef
Schofield, P.F., Knight, K.S., Redfern, S.A.T., Cressey, G., Acta Cryst. B 53, 102 (1997) CrossRef
Kravchenko, V.B., J. Struct. Chem. 10, 139 (1969) CrossRef
A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, 1970)
Li, Z.M., Du, M.L., Physica B 233, 89 (1997) CrossRef
Newman, D.J., Ng, B., Rep. Prog. Phys. 52, 699 (1989) CrossRef
Yu, W.L., Zhao, M.G., Phys. Rev. B 37, 9254 (1988)
Newman, D.J., Pryce, D.C., Runciman, W.A., Am. Mineral. 63, 1278 (1978)
Yang, Z.Y., J. Phys.: Condens. Matter 12, 4091 (2000)
Petrosyan, A.K., Khachatryas, R.M., Sharoyas, K.G., Phys. Stat. Sol. B 122, 725 (1984) CrossRef
J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964)
McGarvey, B.R., J. Phys. Chem. 71, 51 (1967) CrossRef
Abragam, A., Pryce, M.H.I., Proc. Roy. Soc. (Lond.) A 206, 164 (1951) CrossRef
Kool, T.W., Glasbeek, M., Solid State Commun. 32, 1099 (1979) CrossRef
Kool, T.W., Glasbeek, M., J. Phys.: Condens. Matter 3, 9747 (1991)
de Jong, H.J., Glasbeek, M., Solid State Commun. 28, 683 (1978) CrossRef
Bugai, A.A., Levkovskii, P.T., Maksimenko, V.M., Potkin, L.I., Roitsin, A.B., FTT 8, 3687 (1966)
Levkovskii, P.T., Pashkovskii, M.V., Theor. Exp. Chem. USSR 4, 88 (1970) CrossRef
Bugai, A.A., Levkovskii, P.T., Maksimenko, V.M., Pashkovskii, M.V., Roitsin, A.B., ZhETF 50, 1510 (1966)
Hodgson, E.K., Fridovich, I., Biochem. Biophys. Res. Commun. 54, 270 (1973) CrossRef
Dong, H.N., Z. Naturforsch. A 60, 615 (2005)
Wu, S.Y., Yao, J.S., Zhang, H.M., Lu, G.D., Int. J. Mod. Phys. B 21, 3250 (2007) CrossRef