Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T12:39:16.935Z Has data issue: false hasContentIssue false

The modeling of beryllium diffusion in InGaAsP layers grown by GSMBE under nonequilibrium conditions

Published online by Cambridge University Press:  15 October 1999

M. Ketata
Affiliation:
LEMI (UPRES EA 2654 du CNRS), IUT, Université de Rouen, rue Lavoisier, 76821 Mont-Saint-Aignan, France
K. Ketata*
Affiliation:
LEMI (UPRES EA 2654 du CNRS), IUT, Université de Rouen, rue Lavoisier, 76821 Mont-Saint-Aignan, France
S. Koumetz*
Affiliation:
LEMI (UPRES EA 2654 du CNRS), IUT, Université de Rouen, rue Lavoisier, 76821 Mont-Saint-Aignan, France
J. Marcon
Affiliation:
LEMI (UPRES EA 2654 du CNRS), IUT, Université de Rouen, rue Lavoisier, 76821 Mont-Saint-Aignan, France
C. Dubois
Affiliation:
LPM-INSA de Lyon, 20 avenue A. Einstein, 69621 Villeurbanne, France
Get access

Abstract

This study reports on Be diffusion in InGaAsP layers grown by gas source molecular beam epitaxy. The experimental structures consisted of a 2000 Å Be-doped (3 × 109 cm−3) In0.73Ga0.27As0.58P0.42 layer sandwiched between two 5000 Å undoped In0.73Ga0.27As0.58P0.42 layers. The samples were subjected to rapid thermal annealing in the temperature range from 700 to 900 °C with time durations of 10 to 240 s. Secondary ion mass spectrometry was employed for a quantitative determination of the Be depth profiles. Concentration profiles of Be in InGaAsP have been simulated according to two kick-out models: the first model involving neutral Be interstitials and singly positively charged Ga, In self-interstitials, and the second model involving singly positively charged Be interstitials and doubly positively charged Ga, In self-interstitials. Comparison with experimental data shows that the first kick-out model gives a better description.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gee, R.C., Lin, C.L., Farley, C.W., Seabury, C.W., Higgins, J.A., Kirchner, P.D., Woodal, J.M., Asbeck, P.M., Electron. Lett. 29, 850 (1993). CrossRef
Kurishima, K., Nakajima, H., Yamahata, S., Kobayashi, T., Matsuoka, Y., Appl. Phys. Lett. 64, 1111 (1994). CrossRef
Swaminathan, V., Reynolds Jr, C.L., Geva, M., Appl. Phys. Lett. 66, 2685 (1995). CrossRef
Weber, R., Paraskevopoulos, A., Schroeter-Janssen, H., Bach, H.G., J. Electrochem. Soc. 138, 2812 (1991). CrossRef
van Gurp, G.J., Tjaden, D.L.A., Fontijn, G.M., Boudewijn, P.R., J. Appl. Phys. 64, 3468 (1988). CrossRef
van Gurp, G.J., van Dongen, T., Fontijn, G.M., Jacobs, J.M., Tjaden, D.L.A., J. Appl. Phys. 65, 553 (1989). CrossRef
Pessa, M., Tappura, K., Ovtchinnikov, A., Thin Solid Films 267, 99 (1995). CrossRef
Marcon, J., Koumetz, S., Ketata, K., Ketata, M., Caputo, J.G., Eur. Phys. J. AP 8, 7 (1999). CrossRef
Jourdan, N., Alexandre, F., Dubon-Chevallier, C., Dangla, J., Gao, Y., IEEE Trans. Electr. Dev. 39, 767 (1992). CrossRef
Shrivastava, R., Marshak, A.H., Solid State Electron. 23, 73 (1980). CrossRef
van Ommen, A.H., J. Appl. Phys. 54, 5055 (1983). CrossRef
Yu, S., Tan, T.Y., Gösele, U., J. Appl. Phys. 69, 3547 (1991). CrossRef
J. Crank, The mathematics of diffusion (Oxford University Press, Oxford, 1956).
H. Ibach, H. Lüth, Solid-State Physics (Springer, Berlin, 1995).
O. Madelung, Semiconductors-Basic Data (Springer, Berlin, 1996).
Temkin, H., Keramidas, V.G., Pollack, M.A., Wagner, W.R., J. Appl. Phys. 52, 1574 (1981). CrossRef
Pearsall, T.P., Eaves, L., Portal, J.C., J. Appl. Phys. 54, 1037 (1983). CrossRef
Jäger, W., Rucki, A., Urban, K., Hettwer, H.-G., Stolwijk, N.A., Mehrer, H., Tan, T.Y., J. Appl. Phys. 74, 4409 (1993). CrossRef