Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T09:15:23.420Z Has data issue: false hasContentIssue false

Modulation of ZnO film thickness and formation of water-hyacinth nanostructure

Published online by Cambridge University Press:  12 August 2014

Ezhilarasan Gunasekaran
Affiliation:
Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) and School of Electrical & Electronics Engineering (SEEE), SASTRA University, Thanjavur 613 401, Tamil Nadu, India
Prabakaran Shankar
Affiliation:
Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) and School of Electrical & Electronics Engineering (SEEE), SASTRA University, Thanjavur 613 401, Tamil Nadu, India
Ganesh Kumar Mani
Affiliation:
Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) and School of Electrical & Electronics Engineering (SEEE), SASTRA University, Thanjavur 613 401, Tamil Nadu, India
John Bosco Balaguru Rayappan*
Affiliation:
Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) and School of Electrical & Electronics Engineering (SEEE), SASTRA University, Thanjavur 613 401, Tamil Nadu, India
Get access

Abstract

The influence of precursor medium was investigated on the structural, morphological, optical and electrical properties of spray pyrolysis deposited nanostructured ZnO thin films. Three batches of ZnO thin films were deposited on glass substrates using three different solvents (water, water-ethanol [ratio of 1:1] and ethanol) based precursor solution of zinc nitrate hexahydrate. The substrate temperature was fixed at 523 K. The variation in film thickness from 150 to 875 nm was observed as the effect of changing solvent medium. X-ray diffraction (XRD) data confirmed the formation of polycrystalline ZnO thin films with hexagonal wurtzite crystallite structure and the estimated crystallite size was found to be ranging from 31 to 55 nm. Scanning electron micrographs revealed the formation of water-hyacinth shaped nanostructures when water-ethanol mixture was used as the solvent medium. Interestingly, UV-vis spectrophotometer revealed the formation of ZnO film with twin optical band gap of 3.15 eV and 3.56 eV when ethanol was used as the solvent medium. The modulation of film thickness and grain size by solvent medium has strongly influenced the electrical conductivity of ZnO thin films. The homogenous nano-spherical grains with uniform grain boundaries showed a good response towards 100 ppm of ammonia at room temperature.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Janotti, A., Van de Walle, C.G., Reports Prog. Phys. 72, 126501 (2009)CrossRef
Özgür, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H., J. Appl. Phys. 98, 041301 (2005)CrossRef
Kennedy, J., Williams, G.V.M., Murmu, P.P., Ruck, B.J., Phys. Rev. B 88, 214423 (2013)CrossRef
Pawar, B.N., Ham, D.-H., Mane, R.S., Ganesh, T., Cho, B.-W., Han, S.-H., Appl. Surf. Sci. 254, 6294 (2008)CrossRef
Vimalkumar, T.V., Poornima, N., Kartha, C.S., Vijayakumar, K.P., Mat. Sci. Eng. B 175, 29 (2010)CrossRef
Shewale, P.S., Agawane, G.L., Shin, S.W., Moholkar, A.V., Lee, J.Y., Kim, J.H., Uplane, M.D., Sens. Actuators B 177, 695 (2013)CrossRef
El Hichou, A., Bougrine, A., Bubendorff, J.L., Eboth, J., Addou, M., Troyon, M., Semicond. Sci. Technol. 17, 607 (2002)CrossRef
Gomez, J.L., Tigli, O., J. Mater. Sci. 48, 612 (2013)CrossRef
Djurisić, A.B., Leung, Y.H., Small 2, 944 (2006)CrossRef
Xu, S., Wang, Z.L., Nano Res. 4, 1013 (2011)CrossRef
Baviskar, P.K., Nikam, P.R., Gargote, S.S., Ennaoui, A., Sankapal, B.R., J. Alloys Compd. 551, 233 (2013)CrossRef
Khandelwal, R., Singh, A.P., Kapoor, A., Grigorescu, S., Miglietta, P., Stankova, N.E., Perrone, A., Opt. Laser Technol. 40, 247 (2008)CrossRef
Hong, H.K., Heo, Y.-W., Lee, J.-H., Kim, J.-J., J. Nanoelectron. Optoelectron. 8, 489 (2013)CrossRef
Besleaga, C., Stan, G.E., Galca, A.C., Ion, L., Antohe, S., Appl. Surf. Sci. 258, 8819 (2012)CrossRef
Bouhssira, N., Abed, S., Tomasella, E., Cellier, J., Mosbah, A., Aida, M.S., Jacquet, M., Appl. Surf. Sci. 252, 5594 (2006)CrossRef
Wang, H., Dong, S., Chang, Y., Zhou, X., Hu, X., Appl. Surf. Sci. 258, 4288 (2012)CrossRef
Quiñones-Galván, J.G., Sandoval-Jiménez, I.M., Tototzintle-Huitle, H., Hernández-Hernández, L.A., de Moure-Flores, F., Hernández-Hernández, A., Campos-González, E., Guillén-Cervantes, A., Zelaya-Angel, O., Araiza-Ibarra, J.J., Results Phys. 3, 248 (2013)CrossRef
Shei, S.-C., Lee, P.-Y., Chang, S.-J., Appl. Surf. Sci. 258, 8109 (2012)CrossRef
Mani, G.K., Rayappan, J.B.B., Sens. Actuators B 183, 459 (2013)CrossRef
Mani, G.K., Rayappan, J.B.B., J. Alloys Compd. 582, 414 (2014)CrossRef
Shankar, P., Rayappan, J.B.B., Sens. Lett. 11, 1956 (2013)CrossRef
Bakha, Y., Bendimerad, K.M., Hamzaoui, S., Eur. Phys. J. Appl. Phys. 55, 30103 (2011)CrossRef
Fang, F., Futter, J., Markwitz, A., Kennedy, J., Nanotechnology 20, 245502 (2009)CrossRef
Jeong, W.J., Kim, S.K., Park, G.C., Thin Solid Films 506–507, 180 (2006)CrossRef
Park, H.-J., Lee, K.-H., Kumar, B., Shin, K.-S., Jeong, S.-W., Kim, S.-W., J. Nanoelectron. Optoelectron. 5, 135 (2010)CrossRef
Lee, S.-J., Kim, D.-H., Kang, J.K., Kim, D.Y., Kim, H.-M., Han, Y.S., J. Nanosci. Nanotechnol. 13, 7839 (2013)CrossRef
Ramamoorthy, K., Arivanandhan, M., Sankaranarayanan, K., Sanjeeviraja, C., Mater. Chem. Phys. 85, 257 (2004)CrossRef
Phan, D.-T., Chung, G.-S., Appl. Surf. Sci. 257, 4339 (2011)CrossRef
Lu, H., Wang, Y., Lin, X., Mater. Lett. 63, 2321 (2009)CrossRef
Foo, K.L., Kashif, M., Hashim, U., Ali, M.E., Opt. – Int. J. Light Electron Opt. 124, 5373 (2013)CrossRef
Maity, R., Banerjee, A., Chattopadhyay, K., Appl. Surf. Sci. 236, 231 (2004)CrossRef
Maldonado, A., Asomoza, R., Canetas-Ortega, J., Zironi, E.P., Hernandez, R., Patino, R., Solorza-Feria, O., Sol. Energy Mater. Solar Cells 57, 331 (1999)CrossRef
Golobostanfard, M.R., Abdizadeh, H., Ceram. Int. 38, 5843 (2012)CrossRef
Benramache, S., Rahal, A., Benhaoua, B., Opt. – Int. J. Light Electron Opt. 125, 663 (2014)CrossRef
Prasada Rao, T., Santhoshkumar, M.C., Appl. Surf. Sci. 255, 7212 (2009)CrossRef
Boukaous, C., Telia, A., Horwat, D., Aida, M.S., Boudine, B., Ghanem, S., Eur. Phys. J. Appl. Phys. 65, 20302 (2014)CrossRef
Popa, M., Mereu, R.A., Filip, M., Gabor, M., Petrisor, T., Ciontea, L., Mater. Lett. 92, 267 (2013)CrossRef
Lehraki, N., Aida, M.S., Abed, S., Attaf, N., Attaf, A., Poulain, M., Curr. Appl. Phys. 12, 1283 (2012)CrossRef
Simmonds, C., Alcohol, Its Production, Properties, Chemistry, and Industrial Applications: With Chapters on Methyl Alcohol, Fusel Oil, and Spirituous Beverages (MacMillan, London, 1919)Google Scholar
Tatar, D., Turgut, G., Duzgun, B., Rom. J. Phys. 58, 143 (2013)
Bouderbala, M., Hamzaoui, S., Amrani, B., Reshak, A.H., Adnane, M., Sahraoui, T., Zerdali, M., Physica B: Condens. Matter 403, 3326 (2008)CrossRef
Tarwal, N.L., Shinde, V.V., Kamble, A.S., Jadhav, P.R., Patil, D.S., Patil, V.B., Patil, P.S., Appl. Surf. Sci. 257, 10789 (2011)CrossRef
Rizkalla, A.A., Lefebvre, A.H., J. Eng. Gas Turbines Power 97, 173 (1975)CrossRef
Durgajanani, S., Jeyaprakash, B.G., Balaguru, R.J.B., Cryst. Res. Technol. 46, 685 (2011)
Chakraborty, P., Datta, G., Ghatak, K., Physica B: Condens. Matter 339, 198 (2003)CrossRef
Chandramohan, R., Thirumalai, J., Vijayan, T.A.T., in Materials Science – Advanced Topics, edited by Mastai, Y.(Intech, Croatia, 2013)Google Scholar
Abdolahzadeh Ziabari, A., Rozati, S.M., Physica B: Condens. Matter 407, 4512 (2012)CrossRef
Holloway, T., Mundle, R., Dondapati, H., Bahoura, M., Pradhan, A.K., J. Nanophotonics 6, 63507 (2012)CrossRef