Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-03T18:01:18.723Z Has data issue: false hasContentIssue false

Non linear method for the amplification of electrical power delivered by a piezoelectric generator

Published online by Cambridge University Press:  08 February 2006

G. Poulin*
Affiliation:
Systèmes et Applications des Technologies de l'Information et de l'Énergie, École Normale Supérieure de Cachan, 61 Av. du Président Wilson, 94235 Cachan Cedex, France
F. Costa
Affiliation:
Systèmes et Applications des Technologies de l'Information et de l'Énergie, École Normale Supérieure de Cachan, 61 Av. du Président Wilson, 94235 Cachan Cedex, France
E. Sarraute
Affiliation:
Systèmes et Applications des Technologies de l'Information et de l'Énergie, École Normale Supérieure de Cachan, 61 Av. du Président Wilson, 94235 Cachan Cedex, France
E. Minazara
Affiliation:
Systèmes et Applications des Technologies de l'Information et de l'Énergie, École Normale Supérieure de Cachan, 61 Av. du Président Wilson, 94235 Cachan Cedex, France
Get access

Abstract

The electrical supply of portable electronic devices is a crucial problem, which may be solved by harvesting a part of the mechanical energy dissipated in our environment. For the last ten years, many prototype piezoelectric generators have been proposed in research literature, offering different technological choices, but always working according to the same schematics: three different conversion stages. The first one, named mechanical application device (MAD), transforms the initial mechanical stress into a higher level or higher frequency stress. This stress is applied to the second stage, the piezoelectric device (PD). The last stage, an electronic circuit named harvesting system (HS), is essential to maximise the electrical energy delivered to the targeted electronic device. In this paper, we present an experimental test bench that can replace any association of MAD and PD. Then we describe our HS, and demonstrate its performances for our application, where the applied mechanical stress is exponential and varies with a low frequency. Thanks to this HS, the conversion from mechanical energy to electrical energy is improved, and this phenomenon can be explained by simulation, using an equivalent circuit. At last, some experimental results are commented, leading to the perspectives of this research project.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Starner, T., IBM Syst. J. 35, 618 (1996) CrossRef
Williams, C.B., Yates, R.B., Sensor. Actuat. A - Phys. 52, 8 (1996) CrossRef
Shenck, N.S., Paradiso, J., IEEE Micro 21, 30 (2001) CrossRef
A. Chandrakasan, R. Amirtharajah, S. Cho, J. Goodman, G. Konduri, J. Kulik, W. Rabiner, A. Wang, in Proceedings of IEEE Custom Integrated Circuits Conference, San Diego, 1999, pp. 279–286
Sodano, H.A., Inman, D.J., Park, G., Schock Vib. Digest 36, 197 (2004) CrossRef
G. Poulin, E. Sarraute, F. Costa, in Proceedings of 9th International Conference on New Actuators, Bremen, 2004, pp. 404–407
Xu, C.-N., Akiyama, M., Nonaka, K., Watanabe, T., IEEE T. Ultrason. Ferr. 45, 1065 (1998)
Keawboonchuay, C., Engel, T.G., IEEE T. Ultrason. Ferr. 50, 1377 (2003) CrossRef
Umeda, M., Nakamura, K., Ueha, S., Jpn J. Appl. Phys. 36, 3146 (1997) CrossRef
K. Ghandi, N.W. Hagood, A.A. Bent, U.S. Patent 2002/0121844, Sept. 5, 2002
Bateman, D.A., Killick, D.E., J. Phys. E: Sci. Instrum. 2, 212 (1969) CrossRef
P. Smalser, U.S. Patent 5 703 474, Dec. 30, 1997
R. Conradt, German Patent WO 01/95469, Dec. 13, 2001
Ottman, K., Hofmann, H.F., Bhatt, A.C., Lesieutre, G.A., IEEE T. Power Electr. 17, 669 (2002) CrossRef
A. Kasyap, S. Horowitz, J.-S. Lim, K. Ngo, A. Kurdila, T. Nishida, M. Sheplak, L. Cattafesta, in Proceedings of 9th International Congress on Sound and Vibration, Orlando, 2002
J.R. Burns, G.W. Taylor, T.R. Welsh, U.S. Patent 6 522 048, Fev. 18, 2003
E. Lefeuvre, A. Badel, C. Richard, D. Guyomar, in Proceedings of SPIE 11th Annual International Symposium on Smart Structures and Materials, San-Diego, 2004
IEEE Standard on Piezoelectricity, ANSI/IEEE Standard 176, 1987