Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T04:20:10.922Z Has data issue: false hasContentIssue false

Nonlinear multi-harmonic finite-element simulation of a capacitor motor

Published online by Cambridge University Press:  12 July 2007

H. De Gersem*
Affiliation:
Katholieke Universiteit Leuven, Campus Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
T. Weiland
Affiliation:
Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt, Germany
Get access

Abstract

Steady-state operation modes of three-phase induction machines can be efficiently simulated by 2D nonlinear time-harmonic finite-element models, although only induced currents with respect to the fundamental air-gap field are correctly taken into account. This technique does not generalise to single-phase induction machines. An approach based on multiple rotor models and a spectral decomposition of the air-gap field enables to consider higher harmonic air-gap field contributions. In a capacitor-motor model, the first, third and fifth forward and backward rotating components give raise to different frequencies in the rotor which result in different eddy-current effects. The torque dip due to the third harmonic is accurately simulated.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Williamson, S., Robinson, M., IEE Proceedings-B 138, 264 (1991)
De Weerdt, R., Tuinman, E., Hameyer, K., Belmans, R., IEEE Trans. Magn. 33, 2093 (1997) CrossRef
Vassent, E., Meunier, G., Sabonnadière, J., IEEE Trans. Magn. 25, 3064 (1989) CrossRef
Vinsard, G., Laporte, B., IEEE Trans. Magn. 30, 3693 (1994) CrossRef
Arkkio, A., IEEE Trans. Magn. 26, 551 (1990) CrossRef
Sadowski, N., Carlson, R., Arruda, S., da Silva, C., Lajoie-Mazenc, M., IEEE Trans. Magn. 31, 1908 (1995) CrossRef
Davat, B., Ren, Z., Lajoie-Mazenc, M., IEEE Trans. Magn. 21, 2296 (1985) CrossRef
Demenko, A., IEEE Trans. Magn. 32, 1553 (1996) CrossRef
Kurz, S., Fetzer, J., Lehner, G., Rucker, W., IEEE Trans. Magn. 34, 3068 (1998) CrossRef
Rodger, D., Lai, H., Leonard, P., IEEE Trans. Magn. 26, 548 (1990) CrossRef
Buffa, A., Maday, Y., Rapetti, F., IEEE Trans. Magn. 36, 1356 (2000)
De Gersem, H., Weiland, T., IEEE Trans. Magn. 40, 545 (2004) CrossRef
Razek, A., Coulomb, J., Féliachi, M., Sabonnadière, J., IEEE Trans. Magn. 18, 655 (1982) CrossRef
De Gersem, H., Weiland, T., IEEE Trans. Magn. 41, 1844 (2005) CrossRef
W. Nürnberg, Die Asynchronmaschine, 2nd edn. (Springer-Verlag, 1963)
H. De Gersem, S. Vandewalle, M. Clemens, T. Weiland, in Proceedings of the fourteenth international conference on domain decomposition methods, Cocoyoc, Mexico, edited by I. Herrera, D. Keyes, O. Widlund, R. Yates (National Autonomous University of Mexico (UNAM), Mexico City, Mexico, 2003), Domain Decomposition Methods in Science and Engineering, 381, ISBN 970-32-0859-2
Davey, K., IEEE Trans. Magn. 35, 1402 (1999) CrossRef
Yamada, S., Bessho, K., Lu, J., IEEE Trans. Magn. 25, 2971 (1989) CrossRef
Gyselinck, J., Dular, P., Geuzaine, C., Legros, W., IEEE Trans. Magn. 38, 521 (2002) CrossRef
De Gersem, H., Hameyer, K., Weiland, T., J. Comput. Appl. Math. 168, 125 (2004) CrossRef