Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-04T16:36:08.441Z Has data issue: false hasContentIssue false

N-type multicrystalline silicon wafers and rear junction solar cells

Published online by Cambridge University Press:  30 November 2005

S. Martinuzzi*
Affiliation:
UMR TECSEN, Université Paul Cézanne-Aix-Marseille III, 13397 Marseille Cedex 20, France
O. Palais
Affiliation:
UMR TECSEN, Université Paul Cézanne-Aix-Marseille III, 13397 Marseille Cedex 20, France
M. Pasquinelli
Affiliation:
UMR TECSEN, Université Paul Cézanne-Aix-Marseille III, 13397 Marseille Cedex 20, France
F. Ferrazza
Affiliation:
EniTecnologie, via d'Andrea 6, Nettuno, Italy
Get access

Abstract

N-type silicon presents several advantages compared to p-type material, among them, the most important is the small capture cross sections of metallic impurities, which are neatly smaller. As a consequence lifetime and also diffusion length of minority carriers should be neatly higher in n-type than in p-type, for a given impurity concentration. This is of a paramount interest for multicrystalline silicon wafers, in which the impurity-extended crystallographic defects interaction governs the recombination strength of minority carriers. It is experimentally verified that in 1.2 $\rm \Omega $ cm raw wafers lifetimes about 200 $\mu $s and diffusion lengths around 220 $\mu $m are measured. These values increase strongly after gettering treatments like phosphorus diffusion or Al-Si alloying. Scan maps reveal that extended defects are poorly active, although in regions where the density of dislocations is higher than 106 cm-2. Abrupt $p^{+}n$ junctions are obtained by Al-Si alloying after annealing between 850 and 900 °C, which could be used for rear junction cells. Such cells can be processed by means of similar processing steps used to make conventional p-type base cells.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cuevas, A., Kerr, M.J., Samundsett, C., Ferrazza, F., Coletti, G., Appl. Phys. Lett. 81, 4952 (2002) CrossRef
K. Graff, Metal Impurities in Silicon Device Fabrication, Springer Series in Materials 24 (Springer, Berlin, 2000)
D. Macdonald, J.L. Geerligs, Proc. of 19th European Photovoltaic Energy Conference, Paris 2004, edited by W. Hoffmann, J.L. Bal, H. Ossenbrink, W. Palz, P. Helm (Grafica-Lito Italy, 2004), p. 492
Istratov, A.A., Hielsmair, H., Weber, E.W., Appl. Phys. A 69, 13 (1999) CrossRef
Mishra, K., Appl. Phys. Lett. 68, 3281 (1996) CrossRef
Hwang, J.M., Schroder, D.K., Goodman, A.M., IEEE Electr. Device L 7, 172 (1986) CrossRef
C. Schmiga, J. Schmidt, M. Ghosh, A. Metz, R. Hezel, in Ref. [3], p. 1060
J. Libal, T. Buck, R. Kopecek, P. Fath, K. Wambach, A. Acciari, S. Binetti, L.J. Geerligs, in Ref. [3], p. 1013
Meier, D.L., Davis, H.P., Garcia, R.A., Salami, J., Rohatgi, A., Ebong, A., Doshi, P., Sol. Energ. Mat. Sol. C. 65, 621 (2001) CrossRef
D.L. Meier, J.A. Jessup, P. Hacke, S. Granata Jr., N. Ishikawa, M. Emoto, in Ref. [3], p. 100
Palais, O., Arcari, A., J. Appl. Phys. 93, 4686 (2003) CrossRef
Stemmer, , Appl. Surf. Sci. 63, 213 (1993) CrossRef
Palais, O., Gervais, J., Yakimov, E., Martinuzzi, S., Eur. Phys. J. Appl. Phys. 10, 157 (2000) CrossRef
S. Martinuzzi, I. Périchaud, Solid State Phenom. 47; 48, 153 (1996)