Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T02:20:44.900Z Has data issue: false hasContentIssue false

Optical and electrical analyses of DC positive corona discharge in N2/O2/CO2 gas mixtures

Published online by Cambridge University Press:  09 April 2008

N. Merbahi*
Affiliation:
Université de Toulouse, Laplace, CNRS, INPT, UPS, 118 route de Narbonne, Bât. 3R2, 31062 Toulouse Cedex 9, France
A. Abahazem
Affiliation:
Université de Toulouse, Laplace, CNRS, INPT, UPS, 118 route de Narbonne, Bât. 3R2, 31062 Toulouse Cedex 9, France
D. Dubois
Affiliation:
Université de Toulouse, Laplace, CNRS, INPT, UPS, 118 route de Narbonne, Bât. 3R2, 31062 Toulouse Cedex 9, France
O. Eichwald
Affiliation:
Université de Toulouse, Laplace, CNRS, INPT, UPS, 118 route de Narbonne, Bât. 3R2, 31062 Toulouse Cedex 9, France
M. Yousfi
Affiliation:
Université de Toulouse, Laplace, CNRS, INPT, UPS, 118 route de Narbonne, Bât. 3R2, 31062 Toulouse Cedex 9, France
Get access

Abstract

This paper presents an experimental analysis of the electrical and optical behaviour of positive point-plane corona discharges. The measurements of the instantaneous corona current and the current-voltage characteristics are used with the imagery analyses (CCD and streak camera) to determine the streamer properties such as the streamer morphology and velocity with the primary and secondary streamer developments. These analyses are performed first in synthetic air as a function of operating parameters such the applied voltage. Then the effect of gas mixtures (several proportions of N2, O2 with or without CO2) is analysed. When the gas concentration is varied the discharge morphology, the shape and amplitude of the corona current are significantly affected due to the variation of the gas electronegativity following its composition and concentration.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nonthermal Plasma Techniques for Pollution Control, Part A&B, edited by B.M. Penetrante, S.E. Schultheis (Springer-Verlag, Berlin, Heidelberg, 1993)
Masuda, S., Nakao, H., IEEE Trans. Ind. Appl. 26, 374 (1990) CrossRef
Dubois, D., Merbahi, N., Eichwald, O., Yousfi, M., Benhenni, M., J. Appl. Phys. 5, 101 (2007)
L.B. Loeb, Electrical corona: their basic physic mechanisms (Univ. of California Press, 1991)
E. Nasser, Fundamentals of gaseous ionization and plasma electronics (Wiley intersciences, 1971)
Marode, E., J. Appl. Phys. 4, 2005 (1975) CrossRef
Sigmond, R.S., J. Appl. Phys. 5, 1355 (1984)
M. Goldman, A. Goldman, Corona discharges, Gaseous Electronics, edited by M.N. Hirsh, H.J. Oskam (New York Academy, 1978), 1, p. 219
G. Lan, C. Vernon, Rajeev T, S. Viktor, IEEE Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, Minneapolis, October 19–22 (1997), pp. 587–590
Won, J.Yi, Williams, P.F., J. Phys. D: Appl. Phys. 35, 205 (2002)
Ono, R., Oda, T., J. Phys. D: Appl. Phys. 36, 1952 (2003) CrossRef
Tardiveau, P., Marode, E., Agneray, A., J. Phys. D: Appl. Phys. 35, 2823 (2002) CrossRef
van Veldhuizen, E.M., Rutgers, W.R., J. Phys. D: Appl. Phys. 35, 2169 (2002) CrossRef
van Veldhuizen, E.M., W.R. Rutgers. J. Phys. D: Appl. Phys. 36, 2692 (2003)
D. Bessière, J. Paillol, A. Gibert, L. Pécastaing, T. Reess, XV Int. Conf. on Gas Discharge and their applications, Toulouse (2004), 1, 497
Grangé, F., Soulem, N., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 28, 1619 (1995) CrossRef
J. de Urquijo, J.L. Henandez-Avila, S. Rodrigez, 27th ICPIG Eindhoven 18–22 July (2005)