Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-11T05:04:20.489Z Has data issue: false hasContentIssue false

Study of the structure of PZT films: influence of the thermal treatments. Advanced ferroelectric characterisation

Published online by Cambridge University Press:  19 January 2004

D. Pennanéac'h
Affiliation:
PPSM (CNRS UMR 8531), ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan Cedex 4, France
L. Cima*
Affiliation:
SATIE (CNRS UMR 8029), ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan Cedex 4, France
C. Leluyer
Affiliation:
LPCML (CNRS UMR 5620), Université Lyon I, 10 rue A.M. Ampère, 69622 Villeurbanne Cedex, France
K. Nakatani
Affiliation:
PPSM (CNRS UMR 8531), ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan Cedex 4, France
D. Placko
Affiliation:
SATIE (CNRS UMR 8029), ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan Cedex 4, France
Get access

Abstract

Thin films of PbZr$_{(1-x)}$TixO3 have been elaborated using the sol-gel process. We have characterised the thermal behaviour of the sol and of the film of PZT. The different orientations were observed according to the temperature of pyrolysis: [111] at 500 °C, [100] at 450 °C. Finally, an advanced method of electrical characterisation of ferroelectrics is used by separating the reversible and irreversible contributions of polarisation. An experimental Preisach density is then measured and modeled and allows to extract ferroelectric properties. These parameters are independent from electric field strength applied through the sample, leading to a powerful tool to characterise the electrical behaviour.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Scott, J.F., Araujo, C.D., Science 240, 140 (1989)
Taguchi, I., Pignolet, A., Wang, L., Proctor, M., Lévy, F., Schmid, P.E., J. Appl. Phys. 74, 11 (1993) CrossRef
Koch, M., Harris, N., Evans, A.G., White, N.M., Brunnschweiker, A., Sens. and Actuators A 70, 98 (1998) CrossRef
Chen, S., Chen, I., J. Am. Ceram. Soc. 81, 97 (1998) CrossRef
Pennanéac'h, D.M., Poujouly, S., Gaucher, P., Faure, S., Eur. Phys. J. Appl. Phys. 1, 181 (2000) CrossRef
Faure, S.P., Chaux, O., Gaucher, P., J. Phys. III France 7, 1163 (1997)
Hiboux, S., Muralt, P., Maeder, T., J. Mater. Res. 14, 4307 (1999) CrossRef
Bauer, F., Ferroelectrics 49, 213 (1983) CrossRef
Bolten, D., Böttger, U., Schneller, T., Grossman, M., Lhose, O., Waser, R., Appl. Phys. Lett. 77, 23 (2000) CrossRef
Cima, L., Labouré, E., Muralt, P., Rev. Sci. Instrum. 73, 3546 (2002) CrossRef
R.A. Lapels, N.A. Ives, M.S. Leung, Ultra structure processing of ceramics, glasses and composites, edited by. L.L. Hunch, D.R. Ulrich (Wiley, 1986), 320
Agrawal, D.C., et al., J. Raman Spectrosc. 24, 459 (1993) CrossRef
Chen, S., Chen, I., J. Am. Ceram. Soc. 81, 97 (1986) CrossRef
Preisach, F., Z. Phys. 94, 277 (1935) CrossRef
Robert, G., Damjanovic, D., Setter, N., Turik, A.V., J. Appl. Phys. 89, 5067 (2001) CrossRef
Bartic, A., Wouters, D., Maes, H., Rickes, J., Waser, R., J. Appl. Phys. 89, 6 (2001) CrossRef
I.D. Mayergoyz, Mathematical Models of Hysteresis (Springer, Berlin, 1991)
Turik, A.V., Sov. Phys. Solid State 5, 885 (1963)
Turik, A.V., Sov. Phys. Solid State 5, 2141 (1964)
Turik, A.V., Sov. Phys. Solid State 5, 1751 (1964)
L. Cima, E. Labouré, in Proceedings of the 13th IEEE ISAF, Nara, 2002
E. Gondro, C. Kühn, F. Schuler, O. Kowarik, in Proceedings of the 12th IEEE ISAF, Honolulu, 2000